• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 14
  • 12
  • 10
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 281
  • 281
  • 188
  • 143
  • 130
  • 62
  • 41
  • 40
  • 37
  • 28
  • 26
  • 22
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Assessment of Fucoidin efficacy in Aβ-peptide induced Alzheimer’s disease rodent model

Aarti Patel Unknown Date (has links)
Abstract Alzheimer’s disease (AD) is a major public health concern worldwide, with an increasing prevalence in the elderly population. AD is a progressive neurological disorder of multi-faceted origin, where factors such as genetic mutations, biochemical changes, along with inflammatory cascade and soluble beta amyloid (Aβ) peptide, are thought to play a pivotal role in synaptic failure and neuronal death, ultimately leading to cognitive and neuropsychiatric decline in patients suffering from the disease. At present, there is no long-term cure for the disease, although there is access to pharmacotherapy that might improve cognitive and neuropsychiatric symptoms early in the course of the disease. The current pharmacological therapy for AD only provides symptomatic relief for a very short period of time. It is therefore of utmost importance to discover other pharmacological strategies that might delay the development of AD and slow down the disease progression in terms of cognitive decline and neurodegeneration. Elucidating the pathogenic mechanisms involved in AD neuropathogenesis is a major goal to find efficacious disease-modifying treatments. What remains to be understood completely are the intracellular pathways affected by Aβ protein which may lead to neurodegeneration in AD. Since phosphorylation and dephosphorylation mechanisms are crucial in the β-amyloid precursor protein (APP) metabolism, protein kinase C has emerged as one of the key regulators of the APP metabolism. Indeed, dysregulation of the PKC pathway might play a role in the intracellular mechanisms of neurodegeneration, but their effective involvement still remains elusive. Therefore, a detailed analysis of PKC pathways in established models of AD neurodegeneration is necessary and will form part of this work. Fucoidin is a sulphated polysaccharide extracted from edible brown seaweed, which has been shown to exhibit anti-inflammatory and anti-oxidant effects as well as being a neuroprotectant in various inflammatory diseases including hypoxic ischemia, atherosclerosis and Heyman nephritis. Therefore, fucoidin may have an inhibitory effect on the inflammatory mechanisms of AD. Little is known, however, about the effect of fucoidin on AD. Animal models of AD are extremely valuable for the discovery and development of new treatments. Rodents have been one of the preferred models for pharmacological and behavioural studies in AD. In this thesis, first aim was to establish a non-transgenic Aβ-induced AD model in rats. AD was induced utilising a published protocol which involved the bilateral injection of aggregated Aβ (1-42) into the CA3 subfield of the hippocampus in rat brain. Behavioural assessment with well defined tools such as the Morris water maze and T-maze were utilised to assess the impairment in spatial working memory in rats. Behavioural impairments along with increased astrocytosis and microgliosis were observed in this particular Aβ-induced AD model. In the established disease model, fucoidin (50 mg/kg/day and 25 mg/kg/day) and ibuprofen (50 mg/kg/day) were shown to provide a partial protective effect on impairment in memory function in the MWM behavioural task in rats treated prior to disease initiation and throughout the course of the study. In addition, the histopathological and quantitative analysis of AD brain sections showed a marked reduction in reactive glial fibrillary acidic protein (GFAP) and microglia in fucoidin (low and high dose) and ibuprofen treated Aβ injected rats compared to untreated Aβ injected rats. These results indicate that fucoidin may serve as a possible effective therapeutic approach to improve AD symptoms. There is strong evidence that PKC α and ε signalling pathways regulate important molecular events in memory impairment and neurodegenerative pathophysiology in AD. A possible neuroprotective mechanism of fucoidin involving attenuation of an Aβ-induced decrease in PKC ε phosphorylation using cultured SHSY5Y neuroblastoma cells as a model system was examined. Co-administration of fucoidin (2μM and 5 μM) with Aβ (1μM) abolished the inhibitory effect of Aβ on the phosphorylation of PKCε in a concentration-dependent manner as revealed by western blot analysis. These findings suggest that a possible mechanism underpinning the neuroprotective effect of fucoidin may be through prevention of A-induced inhibition of PKC phosphorylation and may serve as a possible therapeutic approach to improve AD symptoms. As cellular events that involve PKC are affected by Aβ in in vitro systems, it was necessary to examine whether PKC activity is also modulated by the Aβ treatment in vivo in our Aβ-peptide induced AD model. Therefore, the next aim was to assess the potential for fucoidin use as an intervention therapy in an established disease stage in the Aβ-peptide induced AD model. Intervention with fucoidin (50 mg/kg/day, i.p.) in the established disease stage partially prevented Aβ (1-42) mediated damage with respect to memory impairment, neuroinflammation and PKC ε phosphorylation in the in vivo AD model consistent with the in vitro findings in SHSY5Y cells.
32

The potential function of ATP-binding cassette A7 in the brain: implications for Alzheimer's disease.

Chan, Lai Ling Sharon, Medical Sciences, Faculty of Medicine, UNSW January 2009 (has links)
ABCA7 is the closest homologue of ABCA1, which is established to play a key role in reverse cholesterol transport. ABCA1 deficiency causes Tangier disease and several ABCA1 modulations have been recently associated with Alzheimer’s disease. Prior research on ABCA7 focused on its role in macrophage lipid efflux and phagocytosis, however, tissue expression studies in mice revealed that ABCA7 is highly expressed in the brain. The function of ABCA7 in the brain is unknown and the purpose of this thesis was therefore to investigate the potential function of ABCA7 in the brain and the possible implications for Alzheimer’s disease. This was achieved by using in vitro models that transiently express ABCA7 and in vivo models including ABCA7 knockout (ABCA7 KO) mice and human APP transgenic (APPSwInd Tg) mice. ABCA7 was shown to potently stimulate cholesterol efflux from cells to extracellular apoE acceptors. Additionally, apoE expression was decreased by 20% in the brains of ABCA7 KO mice compared to wild type littermate controls and by 46% in ABCA7-deficient macrophages. In vitro models that stably express human APP protein demonstrated that the transient expression of ABCA7 increased intracellular APP targeting, which led to the inhibition of APP processing and a resultant decrease in the production of Aβ. In addition, ABCA7-deficient macrophages displayed impaired capacity to endocytose and degrade Aβ oligomers. Finally, in aged APPSwInd Tg mice where abundant amyloid plaques were present, ABCA7 expression was significantly decreased by 48%. Since cholesterol homeostasis modulates APP processing, the findings of this thesis suggest that ABCA7 may have a role in maintaining cellular cholesterol homeostasis via cholesterol efflux to apoE acceptors and possibly by regulating intracellular trafficking of specific membrane proteins. In summary, ABCA7 was clearly shown in this thesis to have an effect on Aβ generation, clearance and degradation. Furthermore, ABCA7 expression was also affected by Aβ deposition in the brain. Even though more work is required to further elucidate the exact function of ABCA7, the findings presented in this thesis provide the first clues to the function of ABCA7 in the brain.
33

Studies on upregulation of amyloid precursor protein in response to traumatic brain injury / Corinna van den Heuvel.

Heuvel, Corinna van den January 1999 (has links)
Appendum pasted into front end-papers. / Bibliography: leaves xiii-xliii. / xi, 195, xliii leaves : ill. (chiefly col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Traumatic brain injury (TBI) effects neuronal cell bodies (NCBs), axons and dendrites in a complex fashion, producing a spectrum of damage dependent on the initial injury and secondary effects. Accumulation of amyloid precursor (APP) in NSBs and axons is a feature of TBI. This accumulation may be due to impairment of the axonal transport of APP and/or upregulation of APP mRNA synthesis. This thesis hypothesizes that mechanical deformation, which is not severe enough to cause immediate cell death, results in increased APP mRNA and antigen expression as an acute phase response to injury. / Thesis (Ph.D.)--University of Adelaide, Dept. of Pathology, 1999
34

Assessment of Fucoidin efficacy in Aβ-peptide induced Alzheimer’s disease rodent model

Aarti Patel Unknown Date (has links)
Abstract Alzheimer’s disease (AD) is a major public health concern worldwide, with an increasing prevalence in the elderly population. AD is a progressive neurological disorder of multi-faceted origin, where factors such as genetic mutations, biochemical changes, along with inflammatory cascade and soluble beta amyloid (Aβ) peptide, are thought to play a pivotal role in synaptic failure and neuronal death, ultimately leading to cognitive and neuropsychiatric decline in patients suffering from the disease. At present, there is no long-term cure for the disease, although there is access to pharmacotherapy that might improve cognitive and neuropsychiatric symptoms early in the course of the disease. The current pharmacological therapy for AD only provides symptomatic relief for a very short period of time. It is therefore of utmost importance to discover other pharmacological strategies that might delay the development of AD and slow down the disease progression in terms of cognitive decline and neurodegeneration. Elucidating the pathogenic mechanisms involved in AD neuropathogenesis is a major goal to find efficacious disease-modifying treatments. What remains to be understood completely are the intracellular pathways affected by Aβ protein which may lead to neurodegeneration in AD. Since phosphorylation and dephosphorylation mechanisms are crucial in the β-amyloid precursor protein (APP) metabolism, protein kinase C has emerged as one of the key regulators of the APP metabolism. Indeed, dysregulation of the PKC pathway might play a role in the intracellular mechanisms of neurodegeneration, but their effective involvement still remains elusive. Therefore, a detailed analysis of PKC pathways in established models of AD neurodegeneration is necessary and will form part of this work. Fucoidin is a sulphated polysaccharide extracted from edible brown seaweed, which has been shown to exhibit anti-inflammatory and anti-oxidant effects as well as being a neuroprotectant in various inflammatory diseases including hypoxic ischemia, atherosclerosis and Heyman nephritis. Therefore, fucoidin may have an inhibitory effect on the inflammatory mechanisms of AD. Little is known, however, about the effect of fucoidin on AD. Animal models of AD are extremely valuable for the discovery and development of new treatments. Rodents have been one of the preferred models for pharmacological and behavioural studies in AD. In this thesis, first aim was to establish a non-transgenic Aβ-induced AD model in rats. AD was induced utilising a published protocol which involved the bilateral injection of aggregated Aβ (1-42) into the CA3 subfield of the hippocampus in rat brain. Behavioural assessment with well defined tools such as the Morris water maze and T-maze were utilised to assess the impairment in spatial working memory in rats. Behavioural impairments along with increased astrocytosis and microgliosis were observed in this particular Aβ-induced AD model. In the established disease model, fucoidin (50 mg/kg/day and 25 mg/kg/day) and ibuprofen (50 mg/kg/day) were shown to provide a partial protective effect on impairment in memory function in the MWM behavioural task in rats treated prior to disease initiation and throughout the course of the study. In addition, the histopathological and quantitative analysis of AD brain sections showed a marked reduction in reactive glial fibrillary acidic protein (GFAP) and microglia in fucoidin (low and high dose) and ibuprofen treated Aβ injected rats compared to untreated Aβ injected rats. These results indicate that fucoidin may serve as a possible effective therapeutic approach to improve AD symptoms. There is strong evidence that PKC α and ε signalling pathways regulate important molecular events in memory impairment and neurodegenerative pathophysiology in AD. A possible neuroprotective mechanism of fucoidin involving attenuation of an Aβ-induced decrease in PKC ε phosphorylation using cultured SHSY5Y neuroblastoma cells as a model system was examined. Co-administration of fucoidin (2μM and 5 μM) with Aβ (1μM) abolished the inhibitory effect of Aβ on the phosphorylation of PKCε in a concentration-dependent manner as revealed by western blot analysis. These findings suggest that a possible mechanism underpinning the neuroprotective effect of fucoidin may be through prevention of A-induced inhibition of PKC phosphorylation and may serve as a possible therapeutic approach to improve AD symptoms. As cellular events that involve PKC are affected by Aβ in in vitro systems, it was necessary to examine whether PKC activity is also modulated by the Aβ treatment in vivo in our Aβ-peptide induced AD model. Therefore, the next aim was to assess the potential for fucoidin use as an intervention therapy in an established disease stage in the Aβ-peptide induced AD model. Intervention with fucoidin (50 mg/kg/day, i.p.) in the established disease stage partially prevented Aβ (1-42) mediated damage with respect to memory impairment, neuroinflammation and PKC ε phosphorylation in the in vivo AD model consistent with the in vitro findings in SHSY5Y cells.
35

Assessment of Fucoidin efficacy in Aβ-peptide induced Alzheimer’s disease rodent model

Aarti Patel Unknown Date (has links)
Abstract Alzheimer’s disease (AD) is a major public health concern worldwide, with an increasing prevalence in the elderly population. AD is a progressive neurological disorder of multi-faceted origin, where factors such as genetic mutations, biochemical changes, along with inflammatory cascade and soluble beta amyloid (Aβ) peptide, are thought to play a pivotal role in synaptic failure and neuronal death, ultimately leading to cognitive and neuropsychiatric decline in patients suffering from the disease. At present, there is no long-term cure for the disease, although there is access to pharmacotherapy that might improve cognitive and neuropsychiatric symptoms early in the course of the disease. The current pharmacological therapy for AD only provides symptomatic relief for a very short period of time. It is therefore of utmost importance to discover other pharmacological strategies that might delay the development of AD and slow down the disease progression in terms of cognitive decline and neurodegeneration. Elucidating the pathogenic mechanisms involved in AD neuropathogenesis is a major goal to find efficacious disease-modifying treatments. What remains to be understood completely are the intracellular pathways affected by Aβ protein which may lead to neurodegeneration in AD. Since phosphorylation and dephosphorylation mechanisms are crucial in the β-amyloid precursor protein (APP) metabolism, protein kinase C has emerged as one of the key regulators of the APP metabolism. Indeed, dysregulation of the PKC pathway might play a role in the intracellular mechanisms of neurodegeneration, but their effective involvement still remains elusive. Therefore, a detailed analysis of PKC pathways in established models of AD neurodegeneration is necessary and will form part of this work. Fucoidin is a sulphated polysaccharide extracted from edible brown seaweed, which has been shown to exhibit anti-inflammatory and anti-oxidant effects as well as being a neuroprotectant in various inflammatory diseases including hypoxic ischemia, atherosclerosis and Heyman nephritis. Therefore, fucoidin may have an inhibitory effect on the inflammatory mechanisms of AD. Little is known, however, about the effect of fucoidin on AD. Animal models of AD are extremely valuable for the discovery and development of new treatments. Rodents have been one of the preferred models for pharmacological and behavioural studies in AD. In this thesis, first aim was to establish a non-transgenic Aβ-induced AD model in rats. AD was induced utilising a published protocol which involved the bilateral injection of aggregated Aβ (1-42) into the CA3 subfield of the hippocampus in rat brain. Behavioural assessment with well defined tools such as the Morris water maze and T-maze were utilised to assess the impairment in spatial working memory in rats. Behavioural impairments along with increased astrocytosis and microgliosis were observed in this particular Aβ-induced AD model. In the established disease model, fucoidin (50 mg/kg/day and 25 mg/kg/day) and ibuprofen (50 mg/kg/day) were shown to provide a partial protective effect on impairment in memory function in the MWM behavioural task in rats treated prior to disease initiation and throughout the course of the study. In addition, the histopathological and quantitative analysis of AD brain sections showed a marked reduction in reactive glial fibrillary acidic protein (GFAP) and microglia in fucoidin (low and high dose) and ibuprofen treated Aβ injected rats compared to untreated Aβ injected rats. These results indicate that fucoidin may serve as a possible effective therapeutic approach to improve AD symptoms. There is strong evidence that PKC α and ε signalling pathways regulate important molecular events in memory impairment and neurodegenerative pathophysiology in AD. A possible neuroprotective mechanism of fucoidin involving attenuation of an Aβ-induced decrease in PKC ε phosphorylation using cultured SHSY5Y neuroblastoma cells as a model system was examined. Co-administration of fucoidin (2μM and 5 μM) with Aβ (1μM) abolished the inhibitory effect of Aβ on the phosphorylation of PKCε in a concentration-dependent manner as revealed by western blot analysis. These findings suggest that a possible mechanism underpinning the neuroprotective effect of fucoidin may be through prevention of A-induced inhibition of PKC phosphorylation and may serve as a possible therapeutic approach to improve AD symptoms. As cellular events that involve PKC are affected by Aβ in in vitro systems, it was necessary to examine whether PKC activity is also modulated by the Aβ treatment in vivo in our Aβ-peptide induced AD model. Therefore, the next aim was to assess the potential for fucoidin use as an intervention therapy in an established disease stage in the Aβ-peptide induced AD model. Intervention with fucoidin (50 mg/kg/day, i.p.) in the established disease stage partially prevented Aβ (1-42) mediated damage with respect to memory impairment, neuroinflammation and PKC ε phosphorylation in the in vivo AD model consistent with the in vitro findings in SHSY5Y cells.
36

The potential function of ATP-binding cassette A7 in the brain: implications for Alzheimer's disease.

Chan, Lai Ling Sharon, Medical Sciences, Faculty of Medicine, UNSW January 2009 (has links)
ABCA7 is the closest homologue of ABCA1, which is established to play a key role in reverse cholesterol transport. ABCA1 deficiency causes Tangier disease and several ABCA1 modulations have been recently associated with Alzheimer’s disease. Prior research on ABCA7 focused on its role in macrophage lipid efflux and phagocytosis, however, tissue expression studies in mice revealed that ABCA7 is highly expressed in the brain. The function of ABCA7 in the brain is unknown and the purpose of this thesis was therefore to investigate the potential function of ABCA7 in the brain and the possible implications for Alzheimer’s disease. This was achieved by using in vitro models that transiently express ABCA7 and in vivo models including ABCA7 knockout (ABCA7 KO) mice and human APP transgenic (APPSwInd Tg) mice. ABCA7 was shown to potently stimulate cholesterol efflux from cells to extracellular apoE acceptors. Additionally, apoE expression was decreased by 20% in the brains of ABCA7 KO mice compared to wild type littermate controls and by 46% in ABCA7-deficient macrophages. In vitro models that stably express human APP protein demonstrated that the transient expression of ABCA7 increased intracellular APP targeting, which led to the inhibition of APP processing and a resultant decrease in the production of Aβ. In addition, ABCA7-deficient macrophages displayed impaired capacity to endocytose and degrade Aβ oligomers. Finally, in aged APPSwInd Tg mice where abundant amyloid plaques were present, ABCA7 expression was significantly decreased by 48%. Since cholesterol homeostasis modulates APP processing, the findings of this thesis suggest that ABCA7 may have a role in maintaining cellular cholesterol homeostasis via cholesterol efflux to apoE acceptors and possibly by regulating intracellular trafficking of specific membrane proteins. In summary, ABCA7 was clearly shown in this thesis to have an effect on Aβ generation, clearance and degradation. Furthermore, ABCA7 expression was also affected by Aβ deposition in the brain. Even though more work is required to further elucidate the exact function of ABCA7, the findings presented in this thesis provide the first clues to the function of ABCA7 in the brain.
37

Molecular mechanisms of neuronal death in [beta]-amyloid peptide toxicity: from basic science to translational research /

Yu, Man-shan. January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2007. / Also available online.
38

Single grain assay of barley beta-amylase : a thesis /

Tan, Beng Huat. January 1968 (has links) (PDF)
Thesis (B. Ag. Sc.(Hons))--University of Adelaide, 1968. / Includes bibliographical references.
39

Unbinding of abeta peptides from amyloid fibrils explicit solvent molecular dynamics study /

Mishra, Pamela Haradhan. January 2008 (has links)
Thesis (M.S.)--George Mason University, 2008. / Vita: p. 48. Thesis director: Dmitri Klimov. Submitted in partial fulfillment of the requirements for the degree of Master of Science in Bioinformatics and Computational Biology. Title from PDF t.p. (viewed Mar. 17, 2009). Includes bibliographical references (p. 45-47). Also issued in print.
40

The role of beta-Amyloid and inflammation in neuronal cell cycle events in Alzheimer's disease mouse models

Varvel, Nicholas H. January 2008 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2008. / [School of Medicine] Department of Neurosciences. Includes bibliographical references.

Page generated in 0.058 seconds