• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 14
  • 12
  • 10
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 281
  • 281
  • 188
  • 143
  • 130
  • 62
  • 41
  • 40
  • 37
  • 28
  • 26
  • 22
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Pleiotropic mechanisms of statin action in Alzheimer's Disease

Ostrowski, Stephen M. January 2007 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2007. / [School of Medicine] Department of Neurosciences. Includes bibliographical references.
52

Biophysical studies on aggregation processes and amyloid fibrils with focus on Alzheimer's disease /

Bark, Niklas, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 6 uppsatser.
53

Alzheimer's disease-related amyloid precursor protein and presenilin genes : normal function and pathophysiology /

Flood, Fiona, January 2004 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2004. / Härtill 5 uppsatser.
54

Mechanisms of [beta]-amyloid clearance by anti-a[beta] antibody therapy /

Wilcock, Donna Marie. January 2004 (has links)
Thesis (Ph.D.)--University of South Florida, 2004. / Includes vita. Includes bibliographical references (leaves 183-193). Also available online.
55

The Effect of Amyloid-Beta on the Insulin Signalling Pathway in Neuroblastoma 2a (N2a) Cells: The Characterization of Insulin Resistance in Alzheimer’s Disease

Yuka, Sai January 2016 (has links)
7Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by accumulation and deposition of extracellular beta-amyloid peptides (Aβ) and intra-neuronal hyperphosphorylated tau in the brain. The insulin signalling pathway begins upstream at the insulin receptor (IR), where the intracellular insulin receptor substrate 1 (IRS1) is phosphorylated, thus propagating the signal downstream to the PI3K/Akt signalling pathway, which affects both the glycogen synthase kinase 3 beta (GSK3β), which is a tau kinase, and mTOR, which is a critical part of the mTORC1 and mTORC2 complexes that not only mediate a wide range of cell functions, but also feed back upstream to regulate Akt. Increasing evidence builds a strong case for the role of soluble Aβ oligomers (AβOs) in the impairment of insulin signalling in AD. Our in vitro studies with neuroblastoma 2a (N2a) cells stably transfected with human APP695 gene (N2a-APP), which secrete excess Aβ, show that the phosphorylation and expression of several but not all critical signalling proteins along the insulin signalling pathway are dysregulated in the cells in comparison to the parental N2a cells. N2a-APP cells were also found to be phenotypically insulin resistant. Subsequently, N2a-APP cells were treated with the Aβ binding peptide (ABP), which binds Aβ oligomers. The ABP treatment was observed to enhance insulin signalling response compared to untreated controls. The results suggest that Aβ may be responsible for inducing the insulin resistant phenotype in N2a-APP cells, and that the removal of Aβ oligomers is a potential treatment consideration for dysfunctional insulin signalling involved in Alzheimer’s disease.
56

Molecular mechanisms of neuronal death in {221}-amyloid peptide toxicity: from basic science to translationalresearch

Yu, Man-shan., 余雯珊. January 2007 (has links)
published_or_final_version / abstract / Anatomy / Doctoral / Doctor of Philosophy
57

NMR studies of the amyloid beta-peptide

Danielsson, Jens January 2007 (has links)
<p>The Amyloid beta peptide (Ab) is related to Alzheimer’s disease and is suggested to be the molecular pathogenic species of the disease, probably through the neurotoxic effect of Ab oligomers. Here the results from biophysical studies of Ab and fragments thereof, are presented. Pulsed field gradient NMR diffusion experiments show that Ab exists mainly as an unfolded monomer. In addition, the hydrodynamic radius of Ab suggests that Ab has residual secondary structure propensities. CD experiments reveal that Ab has a high propensity to adopt a polyproline type II (PII) helix at low temperature. NMR diffusion measurements as well as the 3JHNH values show that increasing the temperature from 4 C induces a structure transition from PII propensity to a beta strand propensity around 15 C and to a random coil conformation at higher temperature. The small hydrodynamic radius at low temperature may be explained by the presence of a population of a hairpin conformation as was suggested by MD simulations. 15N relaxation and secondary chemical shifts suggest that Ab consists of 6 structural regions, two regions with high PII propensity are separated by a highly mobile region located in the N-terminal part of the peptide. In the C-terminal part two regions with a propensity to adopt b-strand are located, separated by a mobile region. The structural propensities of soluble monomeric Ab agree well with the structure of the peptide in fibril aggregates as well as in SDS micelles. Ab binds zinc specifically and with high affinity. This interaction was studied using heteronuclear correlation experiments. The metal ligands were determined to be three histidines, 6,13 and 14 and the N-terminus. The Ab peptide also binds b-cyclodextrin and the combined use of NMR diffusion experiments and induced chemical shifts show that Ab has at least two binding sites for b-cyclodextrin, and the dissociation constants of these binding sites were determined.</p>
58

Therapeutic and functional studies in animal models of Alzheimer's disease

Gumucio, Astrid January 2014 (has links)
Senile plaques (Aβ) and neurofibrillary tangles (tau) are pathological hallmarks of Alzheimer’s disease (AD). If and how the formation of these deposits are mechanistically linked remains mainly unknown. In recent years, the focus has shifted from insoluble protein deposits to soluble aggregates of Aβ and tau. Protofibrils are large soluble Aβ oligomers which were linked to AD by the discovery of the Arctic AβPP mutation. Treatment of young tg-ArcSwe mice with an Aβ protofibril-selective antibody, mAb158, cleared protofibrils, prevented amyloid plaque deposition and protected cultured cells from protofibril-mediated toxicity. This suggests that Aβ protofibrils are necessary for the formation of Aβ deposits. Functional assessment of tg-ArcSwe mice in IntelliCage demonstrated hippocampal-dependent behavioral deficits such as memory/learning impairments, hyperactivity and perseverance behavior. Learning impairments did not correlate to Aβ-measures but to calbindin, which might be a good marker for Aβ-mediated neuronal dysfunction. Splicing of exon 10 in the tau gene differs between human and mouse brain. Exon 10 is part of the microtubule-binding domains which helps to maintain microtubule stability and axonal transport, functions vital to neuronal viability. Axonal transport dysfunction has been proposed as a common pathway of Aβ and tau pathogenesis in AD. Generation of a novel tau mouse model with absence of exon 10 led to age-dependent sensorimotor impairments which may relate to dysfunctions in cerebellum. No tau pathology was evident suggesting that a trigger of tau fibrillization e.g. a human Aβ or tau aggregate is needed. Generation of AβPPxE10 bitransgenic mice with no exon 10 showed lower Aβ plaque burden. Possibly changes in microtubule function lead to altered intracellular AβPP transport and Aβ production. Initiation of tau pathology in AβPPxE10 mice might require a certain type of Aβ-aggregates which is not produced or exist at too low concentration in transgenic mouse brain. In summary, the Aβ protofibril-selective antibody was found to be a promising treatment for AD. The IntelliCage system was proven to be useful for functional evaluation of AβPP mice. Exon 10 in tau was shown to affect sensorimotor functions and Aβ pathology in bitransgenic mice by mechanisms that deserve further investigation.
59

Aggregation kinetics of A\U+fffd\ peptides and the inhibition effects of small molecules on A\U+fffd\ peptide aggregation

Unknown Date (has links)
The pathology of Alzheimer's disease (AD) remains elusive. Competing evidence links amylois \U+fffd\-peptide (A\U+fffd\) amyloid formation to the phenotype of AD (1). The mechanism of amyloid fibril formation has been an ongoing investigation for many years. A\U+fffd\10-23 peptide, a fragment of A\U+fffd\1-42 peptide, contained crucial hydrophobic core residues (2). In this study, an investigation was launched to study the aggreagation process of A\U+fffd\1023 peptide and its ability to form amyloid fibrils. Furthermore, the presence of its hydrophobic core showed importance for its ability to aggregate and form amyloid fibrils. Thereafter, the inhibition of A\U+fffd\1-42 peptide aggregation was studied by using pyrimidine-based compounds. A\U+fffd\1-42 peptides, known to be neurotoxic, aggregate to form amyloid fibrils (3). This investigation may provide insight into the development of novel small molecular candidates to treat AD. / by Ahmad Alex Hijazi. / Thesis (M.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
60

Aggregation Inhibition and Detection of Alzheimer’s Amyloidogenic and Oligomeric Peptides

Unknown Date (has links)
Protein aggregation, oligomer and fibril formation is one of the dominant characteristics in the pathogenesis of a number of neurodegenerative diseases, such as Alzheimer’s disease (AD). Inhibition of toxic oligomer and fibril formation is one of the approaches to find potential drug candidates for AD. Additionally, early diagnosis of these amyloid species can provide mechanistic understanding of protein aggregation and thus can pave the way for preventing the onset of AD. The aim of this dissertation was 1) to explore the effects of charged cholesterol derivatives on the aggregation kinetic behavior of Amyloid-β40 (Aβ40), 2) to probe Aβ40 oligomer and amyloid formation in vitro using gold nanoparticles (AuNPs), and 3) to monitor the kinetic effect of various natural product molecules on Aβ40 aggregation in vitro. In the first chapter, a general introduction about AD as an amyloidogenic disease, amyloid cascade hypothesis, and the manipulation of Aβ peptides aggregation kinetics using different approaches was presented. In the second chapter, we studied the effects of oppositely charged cholesterol derivatives on the aggregation kinetics of Aβ. In the third chapter, we developed a gold nanoparticles (AuNPs) assay to probe Aβ40 oligomers and amyloid formation. In chapter IV, we monitored the effects of various small molecules on the aggregation kinetics of Aβ40. In chapter V, we discussed the methods and experimental details. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0682 seconds