• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inhibitors of Amyloid Beta Oligomerization and Toxicity

Zabala Rodriguez, Maria C 01 January 2024 (has links) (PDF)
Neurotoxic aggregates of amyloid beta (Aβ) peptide contribute to the etiology of Alzheimer's disease (AD). Aβ1-42 forms oligomeric structures that undergo further aggregation into protofibrils and fibrils. Oligomeric Aβ1-42 is more toxic than monomers or mature fibrils. In this work, we used two distinct approaches to inhibit Aβ1-42 oligomerization and toxicity. First, seven distinct but overlapping Aβ fragments were used to identify their individual aggregation propensities and their effects on Aβ1-42 oligomerization and cytotoxicity. Studies on suppression of Aβ1-42 cytotoxicity by peptides, including those derived from Aβ1-42, have been conducted before, but peptides encompassing the whole Aβ1-42 sequence have not been systematically analyzed. Aβ1-42 was allowed to aggregate and form oligomeric assemblies in aqueous buffer for 4 h in the absence or presence of 2-fold molar excess of an Aβ fragment. Cytotoxicity analysis then recorded the impact of each fragment on Aβ1-42 cytotoxicity as well as the toxicity of the fragments themselves. An enzyme-linked immunosorbent assay that detects oligomeric Aβwas used to determine the effect of each fragment on Aβ1-42 oligomerization after 4 h of aggregation. Four fragments of Aβ1-42 inhibited the toxicity of oligomeric Aβ1-42 to various degrees, while two others conferred no cellular protection against Aβ1-42 toxicity. Interestingly, one fragment enhanced Aβ1-42 toxicity after 4 h of aggregation. Three of the four fragments that blocked Aβ1-42 toxicity partially disrupted oligomer formation, showing correlation between the inhibition of Aβ1-42 aggregation and the inhibition of cellular toxicity. Second, we examined whether protein disulfide isomerase (PDI), a chaperone mainly found in the endoplasmic reticulum, could reverse the oligomeric state of aggregated Aβ1-42 and thus its toxicity. Previous work has demonstrated that PDI inhibits Aβ1-42 aggregation at sub-stoichiometric concentrations. To assess PDI's effect on Aβ1-42 toxicity, Aβ1-42 was allowed to aggregate for 2 h before the addition of PDI at a 1:10 molar ratio of PDI to Aβ1-42 and then allowed to aggregate for another 2 h. MTS cytotoxicity assays using PC-12 cells showed that adding PDI 2 h after the start of aggregation improves cell survival. Through a differential centrifugation assay followed by Western blot, we qualitatively illustrated that PDI can reverse a 2 h aggregate of Aβ1-42 to the monomeric state. Overall, in this project we have learned that inhibiting the oligomeric assembly of Aβ1-42 directly decreases the effect of Aβ1-42 toxicity. Inhibition of Aβ1-42 toxicity was seen with both fragments derived from Aβ1-42 and PDI, shedding light into two novel approaches as possible therapeutics for AD.

Page generated in 0.0382 seconds