• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 32
  • 17
  • 11
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Applications of Focused Ultrasound for Reducing Amyloid-β in a Mouse Model of Alzheimer's Disease

Jordao, Jessica F. 10 January 2014 (has links)
Focused ultrasound (FUS) can temporarily increase blood-brain barrier (BBB) permeability and locally deliver therapeutic agents to the brain. To date, applications of FUS for treatment of Alzheimer’s disease (AD) have not been explored. Here, I propose that FUS can facilitate a rapid reduction in amyloid-β peptide (Aβ) pathology in a mouse model of AD. Firstly, FUS was used to enhance delivery of an antibody directed against Aβ, which aggregates and forms extracellular plaques. FUS mediated the delivery of antibodies to the targeted right cortex by 4 hours post-treatment and antibodies remained bound to Aβ plaques for 4 days. At 4 days post-treatment, stereological quantification of plaque burden demonstrated a significant reduction of 23%. Secondly, FUS treatment alone resulted in a significant reduction in plaque load (13%). I then investigated effects of FUS that may contribute to Aβ plaque reduction, specifically the delivery of endogenous antibodies to the brain and, activation of microglia and astrocytes. Endogenous immunoglobulin was found bound to plaques within the treated cortex at 4 days post-FUS. Western blot analysis confirmed that immunoglobulin levels were increased significantly. Further, FUS led to a time-dependent increase in glial response. The expression of ionized calcium-binding adaptor molecule 1, a marker of phagocytic microglia, was increased at 4 hours and 4 days, and it was resolved by 15 days. Astrocytes had a slightly delayed response, with an increase in the expression of glial fibrillary acidic protein at 4 days, which declined by 15 days. After 4 days, microglia and astrocytes had significantly greater volumes and surface areas, signifying enhanced activation in the FUS-treated cortex, without an apparent increase in cell count. Co-localization of Aβ within activated glia revealed a significant increase in Aβ internalization following FUS. In conclusion, it was demonstrated that the delivery of exogenous antibodies by FUS, and FUS alone can lead to plaque reduction. Mechanisms by which FUS alone reduces plaque load may include entry of endogenous antibodies to the brain and the induction of a transient glial response. This work details acute effects of FUS that highlight the promise of this delivery method for AD treatment.
12

EFEITO NEUROPROTETOR DE NANOCÁPSULAS CONTENDO MELOXICAM EM UM MODELO DA DOENÇA DE ALZHEIMER INDUZIDO PELO PEPTÍDEO β- AMILOIDE EM CAMUNDONGOS

Ianiski, Francine Rodrigues 02 December 2011 (has links)
Submitted by MARCIA ROVADOSCHI (marciar@unifra.br) on 2018-08-16T14:24:58Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_FrancineRodriguesIaniski.pdf: 3871772 bytes, checksum: ea06b31c8ed51f3bf9a88cbfb0d4956c (MD5) / Made available in DSpace on 2018-08-16T14:24:58Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_FrancineRodriguesIaniski.pdf: 3871772 bytes, checksum: ea06b31c8ed51f3bf9a88cbfb0d4956c (MD5) Previous issue date: 2011-12-02 / Alzheimer's disease (AD) is a chronic neurodegenerative pathologic process associated with aging. This disease causes cognition deterioration and memory loss. The formation of senile plaques containing amyloid-β peptide (aβ) is the main characteristic of this disease. Also, AD related with the inflammation and oxidative stress. The lack of drugs used in the prevention and treatment of AD has stimulated the search for new agents that may represent a novel therapeutic alternative. In the present study, we investigated the beneficial effect of meloxicam-loaded nanocapsules in a model of AD induced by intracerebroventricular (i.c.v.) injection of aβ peptide (fragment 25-35) in mice, comparing the effect with free meloxicam. Mice were divided into six groups: (I) control, (II) aβ, (III) Nano, (IV) Free, (V) Nano + aβ and (VI) Free + aβ. Mice were treated with meloxicam-loaded nanocapsules (5 mg/kg, by gavage), free-meloxicam (5 mg/kg, by gavage) or blank nanocapsules. Thirty minutes after treatments, aβ (3 nmol) or filtered water were i.c.v. injected (day 1). Learning and memory were assessed with the Morris water-maze and step-down-type passive-avoidance tasks at the days 4–7 and 7–8 after the aβ injection, respectively. At the end of the experimental protocol, animals were died and brains were removed for determination of reactive species (RS) and non-protein thiols (NPSH) levels, and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) activities. The results demonstrated that aβ injection caused learning and memory deficits in mice, which were verified using the Morris water-maze and step-down-type passiveavoidance tasks. Furthermore, this study showed that oxidative stress was increased in mice that received aβ. The most important findings of the present study was that meloxicam-loaded nanocapsules protected the learning and memory impairments induced by aβ. Moreover, meloxicam-loaded nanocapsules also protected against the increase of oxidative stress. However, free-meloxicam did not have protective effect. All these findings support the beneficial role of meloxicam-loaded nanocapsules in a model of AD induced by aβ. We can suggest that nanocapsules favor the passage of meloxicam through the blood-brain barrier and entry of the drug in the central nervous system. / A doença de Alzheimer (DA) é um processo patológico neurodegenerativo crônico associado ao envelhecimento. Essa patologia ocasiona deterioração da cognição e perda da memória. A formação de placas senis contendo o peptídeo β-amiloide (βa) é a principal característica dessa doença, que também está associada à inflamação e ao estresse oxidativo. A falta de fármacos empregados na prevenção e no tratamento da DA tem estimulado a pesquisa por novos agentes que possam representar uma inovadora alternativa terapêutica. No presente estudo, investigamos o efeito benéfico das nanocápsulas contendo meloxicam sobre o déficit de aprendizagem e de memória em um modelo da DA induzido pela injeção intracerebroventricular (i.c.v.) do peptídeo βa (fragmento 25-35) nos camundongos, comparando o efeito com o fármaco na forma livre. Os camundongos foram divididos em seis grupos: (I) Controle, (II) βa, (III) Nano, (IV) Livre, (V) Nano + βa, (VI) Livre + βa. Os camundongos foram pré-tratados com as nanocápsulas contendo meloxicam (5 mg/kg, por gavagem), ou com o fármaco na forma livre (5 mg/kg, por gavagem), ou com as nanocápsulas brancas. Trinta minutos após os tratamentos, foram injetados i.c.v. o peptídeo βa (3 nmol) ou água filtrada (dia 1). A aprendizagem e a memória foram avaliadas através dos testes do labirinto aquático de Morris e da esquiva passiva, nos dias 4-7 e 7-8 após a injeção do peptídeo βa, respectivamente. No final dos testes comportamentais, os animais foram mortos e os cérebros removidos para a determinação dos níveis de espécies reativas (ER) e tióis nãoproteicos (SHNP), e a atividade das enzimas superóxido dismutase (SOD), catalase (CAT), glutationa peroxidase (GPx), glutationa redutase (GR) e glutationa S-transferase (GST). Os resultados demonstraram, através dos testes do labirinto aquático de Morris e da esquiva passiva, que a injeção i.c.v. do peptídeo βa causou um déficit na aprendizagem e na memória dos camundongos. Além disso, esse estudo demonstrou que o estresse oxidativo foi aumentado nos camundongos que receberam a injeção i.c.v. do peptídeo βa. Os achados mais importantes desse estudo foram que as nanocápsulas contendo meloxicam protegeram o déficit de aprendizado e de memória induzidas pela injeção i.c.v. do peptídeo βa, assim como foram capazes de proteger contra o aumento do estresse oxidativo. No entanto, o meloxicam na forma livre não apresentou esse efeito protetor. Todos esses achados reforçam o papel benéfico do meloxicam nanoencapsulado em um modelo da DA induzido pela injeção i.c.v. do peptídeo βa, sugerindo que as nanocápsulas favorecem a passagem do meloxicam através da barreira hematoencefálica (BHE) e a entrada do fármaco no sistema nervoso central (SNC)
13

Role of the Slingshot-Cofilin and RanBP9 pathways in Alzheimer's Disease Pathogenesis

Woo, Jung A 12 October 2015 (has links)
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by two major pathological hallmarks, amyloid plaques and neurofibrillary tangles. The accumulation of amyloid-β protein (Aβ) is an early event associated with synaptic and mitochondrial damage in AD. Therefore, molecular pathways underlying the neurotoxicity and generation of Aβ represent promising therapeutic targets for AD. Recent studies have shown that actin severing protein, Cofilin plays an important role in synaptic remodeling, mitochondrial dysfunction, and AD pathogenesis. However, whether Cofilin is an essential component of AD pathogenesis and how Aβ induced neurotoxicity impinges its signals to Cofilin are unclear. In my dissertation studies, we found Aβ oligomers bind with intermediate activation conformers of β1-integrin to induce the loss of surface β1-integrin and activation of Cofilin via Slingshot homology-1 (SSH1) activation. Specifically, conditional loss of β1-integrin prevented Aβ induced Cofilin activation, and allosteric modulation or activation of β1-integrin significantly reduced Aβ binding to neurons and mitigated Aβ42-induced reactive oxygen species (ROS) generation, mitochondrial dysfunction, synaptic proteins depletion, and apoptosis. Furthermore, we found that SSH1 reduction, which mitigated Cofilin activation, prevented Aβ-induced mitochondrial Cofilin translocation and apoptosis, while AD brain mitochondria contained significantly increased activated/oxidized Cofilin. In mechanistic support in vivo, we demonstrated that APP transgenic mice brains contain decreased SSH/Cofilin and SSH1/14-3-3 complexes which indicates that SSH-Cofilin activation occurred by releasing of SSH from 14-3-3. We also showed that genetic reduction in Cofilin rescues APP/Aβ-induced synaptic protein loss and gliosis, as well as impairments in synaptic plasticity and contextual memory in vivo. Our lab previously found that overexpression of the scaffolding protein RanBP9 increases Aβ production in cell lines and in transgenic mice, while promoting Cofilin activation and mitochondrial dysfunction. However, how endogenous RanBP9 activates cofilin and whether endogenous RanBP9 accelerates Aβ-induced deficits in synaptic plasticity, cofilin-dependent pathology, and cognitive impairments were unknown. In my dissertation studies, we found that endogenous RanBP9 positively regulates SSH1 levels and mediates A-induced translocation of Cofilin to mitochondria. Moreover, we demonstrated that endogenous RanBP9 mediates A-induced formation of Cofilin-actin rods in primary neurons. Endogenous level of RanBP9 was also required for Aβ-induced collapse of growth cones in immature neurons and depletion of synaptic proteins in mature neurons. In vivo, we also found APP transgenic mice exhibit significantly increased endogenous RanBP9 levels and that genetic reduction in RanBP9 rescued APP/Aβ-induced synaptic protein loss, gliosis, synaptic plasticity impairments, and contextual memory deficits. These findings indicated that endogenous RanBP9 not only promotes Aβ production but also meditate Aβ induced neurotoxicity via positively regulating SSH1. Taken together, these novel findings implicate essential involvement of β1-integrin–SSH1/RanBP9–Cofilin pathway in mitochondrial and synaptic dysfunction in AD pathogenesis.
14

Synthesis and Characterization of Quasi-Stable Toxic Oligomer Models of Amyloid β / 準安定なアミロイドβの毒性オリゴマーモデルの合成と機能解析

Irie, Yumi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22505号 / 農博第2409号 / 新制||農||1077(附属図書館) / 学位論文||R2||N5285(農学部図書室) / 京都大学大学院農学研究科食品生物科学専攻 / (主査)教授 保川 清, 教授 宮川 恒, 教授 入江 一浩 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
15

Fibronectin type III domain-containing protein 5 interacts with APP and decreases amyloid β production in Alzheimer’s disease. / Fibronectin type III domain-containing protein 5は、アルツハイマー病におけるアミロイドβ前駆体タンパク質と結合し、アミロイドβの産生を抑制する。

Noda, Yasuha 23 January 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間健康科学) / 甲第21459号 / 人健博第66号 / 新制||人健||5(附属図書館) / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 青山 朋樹, 教授 岡 昌吾, 教授 髙橋 良輔 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
16

NMR Investigations of the Self-Organization and Dynamics of Mutated Amyloid Protein Fibrils

Korn, Alexander 13 September 2022 (has links)
This work investigates the influence of mutations at selected positions on the structure formation of the Alzheimer’s disease peptide amyloid β. Amyloid β is a member of the class of intrinsically disordered proteins that can aggregate into fibrils, which are characterized by a highly stable secondary structure, called cross-β structure. A central contact during fibrillation is the hydrophobic F19-L34 contact, which is located within the core of the cross-β structure. Modifications of this contact are known to influence the local molecular structure whereas the fibril morphology and the cross-β structure remain stable. In contrast, toxicity of amyloid β was completely lost for all previously investigated mutants of F19 and L34. This work characterizes the properties of this contact and answers the question what the minimally tolerated modifications are. To characterize the structure, structure formation process and biological activity of the Aβ variants a set of experiments was carried out. The local structure and dynamics were investigated using NMR experiments focusing on 13C-chemical shift changes and 1H-13C dipolar couplings, respectively. The fibril morphology and cross- β structure was verified by electron microscopy, circular dichroism spectroscopy and X-ray diffraction. Toxicity and biological activity was investigated using complementary cell culture experiments. The work was divided in three parts. First, L34 was substituted with three highly similar amino acids: the isomer isoleucine, valine that is one methylene group shorter but also a branched chain amino acid and the stereoisomer D-leucine. The L34 position proved to be important for the initiation of the structure formation, oligomer stability, fibril growth and the biological activity of amyloid β. These characteristics and properties were highly sensitive also to minor modifications but the different mutants showed no specific but qualitatively similar effects. The second part complemented previous mutation studies of the F19 position. Four new mutants were designed testing mild modification of the F19-L34 contact: phenylglycine and the homophenylalanine (S)-2-amino-4-phenyl-butyric acid change the length of the side chain, cyclohexyl-alanine eliminates the π-aromaticity of the ring system and increases the 3D steric demand, and (1-naphtyl)-alanine increases the 2D steric demand while maintaining the aromaticity. Mutations at the F19 position caused qualitatively similar effects as L34 modifications but proved to have quantitatively greater impact. Furthermore, they showed some specificity as steric constraints caused larger changes than modifications of the ring system. The third part investigates the influence of β-methylamino-L-alanine (BMAA) substitutions at positions F19, S8, and S26. The serine to BMAA substitutions were included because of their potential medical relevance. A F19BMAA substitution caused similar effects like other modifications at this position. Replacement of serine lead to a structural reorientation of the Aβ N-terminus and turn region. Furthermore, the pathways of the cell response changed from mitochondrial activity and plasma membrane integrity to apoptosis and neuronal stress reaction. Summarizing, it could be shown that, although the formation and structure of amyloid β fibrils is robust against different modifications the fibrillation kinetics, local structure and especially biological activity is highly sensitive and to some extend specific to even minor modifications.
17

Understanding the Inhibition of the Amyloid-β Peptide Oligomerization by Transferrin Utilizing NMR Spectroscopy

Raditsis, Annie Victoria 12 1900 (has links)
A hallmark of Alzheimer's disease (AD) is the accumulation of insoluble senile plaques in the brain.[1] The major component of the insoluble plaques is the amyloid-β peptide (Aβ) that is produced through cleavage of the amyloid-β precursor protein (APP).[2] It is well understood that once the monomeric Aβ is generated, it has the potential to aggregate into soluble oligomers and further into insoluble fibrils. Recently it has been proposed that early oligomers are the main toxic species in the aggregation cascade.[3] However, it has been shown that the formation of toxic early oligomers is inhibited by several endogenous plasma proteins, including albumin and transferrin (Tf). In this investigation we are focusing on the mechanism of inhibition of the Aβ early oligomerization by Tf. Specifically, we have targeted the early stages of Aβ aggregation using a deletion mutant of the Aβ peptide, i.e. the Aβ12-28 fragment, which selectively stabilizes the early Aβ oligomers. Self-association of this peptide was controlled by adding-NaCl to filtered monomeric Aβ samples and the effect of Tf inhibition on these aggregates was probed by 1H relaxation NMR experiments.[4-7] Our data shows that Tf directly targets intermediary Aβ oligomers via a coating mechanism. 1. Kirkitadze, M.D., Condron, M.M. and Teplow, D.B, JMB 2001 312;1103-1119. 2. Stefan F. Lichtenthaler and Christian Haass, JCI 2004 113(10);1384-1387. 3. Necula M., Kayed R., Milton, S. and Glabe C.G, JBC 2007 282(14);10311-10324. 4. Klement K., Wieligmann K., Meinhardt J., Hortschansky P., Richter W., and Fändrich M., JMB 2007 373;1321-1333. 5. Huang H, Milojevic J, Melacini G. J Phys Chem B. 2008 112(18):5795-802. 6. Milojevic J, Esposito V, Das R, Melacini G. JACS. 2007 129(14):4282-90. 7. Milojevic J, Esposito V, Das R, Melacini G. J Phys Chem B. 2006 110(41):20664-70. / Thesis / Master of Science (MSc)
18

THE PREBIOTIC INULIN BENEFICIALLY MODULATES THE GUT-BRAIN AXIS BY ENHANCING METABOLISM IN AN APOE4 MOUSE MODEL

Hoffman, Jared D. 01 January 2018 (has links)
Alzheimer’s disease (AD) is the most common form of dementia and a growing disease burden that has seen pharmacological interventions primarily fail. Instead, it has been suggested that preventative measures such as a healthy diet may be the best way in preventing AD. Prebiotics are one such potential measure and are fermented into metabolites by the gut microbiota and acting as gut-brain axis components, beneficially impact the brain. However, the impact of prebiotics in AD prevention is unknown. Here we show that the prebiotic inulin increased multiple gut-brain axis components such as scyllo-inositol and short chain fatty acids in the gut, periphery, and in the case of scyllo-inositol, the brain. We found in E3FAD and E4FAD mice fed either a prebiotic or control diet for 4-months, that the consumption of the prebiotic inulin can beneficially alter the gut microbiota, modulate metabolic function, and dramatically increase scyllo-inositol in the brain. This suggests that the consumption of prebiotics can beneficially impact the brain by enhancing metabolism, helping to decrease AD risk factors.
19

Investigation of Amyloid β Oligomer Dissociation Mechanisms by Single Molecule Fluorescence Techniques

Abdalla, Hope Cook 01 January 2019 (has links)
Alzheimer’s disease (AD) is currently considered the most prevalent neurodegenerative disease and places a large financial burden on society as healthcare resources are limited and the disease does not have a cure. Alzheimer’s disease is characterized by the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles; however current literature suggests Aβ oligomers are the main aggregating species leading to AD symptoms. Therefore, the underlying cause of Alzheimer’s, accumulation of amyloid beta, is currently being studied in hopes of developing treatment options. Our research aims at determining the mechanism and kinetics of Aβ oligomer dissociation into non-toxic monomers in the presence of denaturants or small molecule dissociators. These highly active small molecule dissociators, selected from the Apex Screen 5040 library, were previously identified by ELISA studies by the laboratory of Dr. Harry LeVine. We have used fluorescence correlation spectroscopy (FCS) to characterize the size distribution and mole fraction of synthetically prepared fluorescein labeled Aβ (1-42) oligomers. Our FCS results show that in the presence of denaturants or small molecule dissociators, oligomer dissociation may proceed by at least two different mechanisms; high order cooperative dissociation and linear dissociation. A cooperative mechanism is more desirable for therapeutics as oligomer directly dissociates into monomer rather than through various oligomer intermediates. Our FCS studies show the most efficient dissociators proceed through the cooperative dissociation mechanism. We also observed a large retardation of the oligomer dissociation in the presence of gallic acid. We also started preliminary work to develop a total internal reflection fluorescence (TIRF) spectroscopy method to image Aβ (1-42) oligomers. This technique if successful will help to verify the two distinct mechanisms seen by FCS or determine if there is one mechanism that occurs at different rates as TIRF allows for faster analysis.
20

Pathogenic Mechanisms of the Arctic Alzheimer Mutation

Sahlin, Charlotte January 2007 (has links)
<p>Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, neuropathologically characterized by neurofibrillay tangles and deposition of amyloid-β (Aβ) peptides. Several mutations in the gene for amyloid precursor protein (APP) cause familial AD and affect APP processing leading to increased levels of Aβ42. However, the Arctic Alzheimer mutation (APP E693G) reduces Aβ levels. Instead, the increased tendency of Arctic Aβ peptides to form Aβ protofibrils is thought to contribute to the pathogenesis. </p><p>In this thesis, the pathogenic mechanisms of the Arctic mutation were further investigated, specifically addressing if and how the mutation affects APP processing. Evidence of a shift towards β-secretase cleavage of Arctic APP was demonstrated. Arctic APP did not appear to be an inferior substrate for α-secretase, but the availability of Arctic APP for α-secretase cleavage was reduced, with diminished levels of cell surface APP in Arctic cells. Interestingly, administration of the fatty acid docosahexaenoic acid (DHA) stimulated α-secretase cleavage and partly reversed the effects of the Arctic mutation on APP processing.</p><p>In contrast to previous findings, the Arctic mutation generated enhanced total Aβ levels suggesting increased Aβ production. Importantly, this thesis illustrates and explains why measures of both Arctic and wild type Aβ levels are highly dependent upon the Aβ assay used, with enzyme-linked immunosorbent assay (ELISA) and Western blot generating different results. It was shown that these differences were due to inefficient detection of Aβ oligomers by ELISA leading to an underestimation of total Aβ levels. </p><p>In conclusion, the Arctic APP mutation leads to AD by multiple mechanisms. It facilitates protofibril formation, but it also alters trafficking and processing of APP which leads to increased steady state levels of total Aβ, in particular at intracellular locations. Importantly, these studies highlight mechanisms, other than enhanced production of Aβ peptide monomers, which could be implicated in sporadic AD.</p>

Page generated in 0.1143 seconds