• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 10
  • 10
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiplexação por divisão em multirresolução: um novo sistema baseado em wavelets

BOUTON, Eric Albert January 2006 (has links)
Made available in DSpace on 2014-06-12T17:39:50Z (GMT). No. of bitstreams: 2 arquivo6969_1.pdf: 1604741 bytes, checksum: b2e7a8ea6ab5cd7e9d0893f0b6e7bbcb (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2006 / Um novo esquema de multiplexação é proposto, baseado na abordagem de Mallat de sistemas wavelet por multiresolução. Este sistema é adaptável e a sua implementação é adequada para processadores de sinais e computadores digitais. A técnica, chamada de multiplexação por divisão em multiresolução (MRDM) faz um uso intensivo de ferramentas de processamento de sinais, é extremamente flexível e pode combinar uma variedade de sinais com características espectrais diferentes.Uma ampla variedade de sistemas wavelet é compatível com a MRDM e as formas de onda do canal, e consequentemente a estrutura espectral e o desempenho do sistema, dependem das wavelets escolhidas. A demultiplexação pode ser efetuada de forma eficiente, graças a algoritmos de cálculo que possuem uma complexidade computacional que aumenta de forma linear com o comprimento dos sinais de entrada. Após um estudo sobre as ferramentas necessárias para o desenvolvimento do trabalho, é apresentada a MRDM e um número de esquemas é mostrado, utilizando diferentes sistemas wavelet (Haar, chapéu mexicano, etc...), de forma a ilustrar o potencial e a versatilidade desta nova abordagem para multiplexação
2

Análise de distúrbios relacionados com a qualidade da energia elétrica utilizando a transformada Wavelet / Analysis of power quality disturbances using Wavelet transform

Arruda, Elcio Franklin de 07 April 2003 (has links)
O presente trabalho visa a utilização da transformada Wavelet no monitoramento do sistema elétrico no que diz respeito a problemas de qualidade da energia com o intuito de detectar, localizar e classificar os mesmos. A transformada Wavelet tem surgido na literatura como uma nova ferramenta para análise de sinais, utilizando funções chamadas Wavelet mãe para mapear sinais em seu domínio, fornecendo informações simultâneas nos domínios tempo e freqüência. A transformada Wavelet é realizada através de filtros decompondo-se um dado sinal em análise multiresolução. Por esta, obtém-se a detecção e a localização de distúrbios relacionados com a qualidade da energia decompondo-se o sinal em dois outros que representam uma versão de detalhes (correspondente as altas freqüências do sinal) e uma versão de aproximação (correspondente as baixas freqüências do sinal). A versão de aproximação é novamente decomposta obtendo-se novos sinais de detalhes e aproximações e assim sucessivamente. Sendo assim, os distúrbios podem ser detectados e localizados no tempo em função do seu conteúdo de freqüência. Estas informações fornecem também características únicas pertinentes a cada distúrbio, permitindo classificá-los. Desta forma, propõe-se neste trabalho o desenvolvimento de um algoritmo classificador automático de distúrbios relacionados com a qualidade da energia baseado unicamente nas decomposições obtidas da análise multiresolução. / The aim of the present dissertation is to apply the Wavelet transform to analyze power quality problems, detecting, localizing and classifying them. The topic Wavelet transform, has appeared in the literature as a new tool for the analysis of signals, using functions called mother Wavelet to map signals in its domain, supplying information in the time and frequency domain, simultaneously. Wavelet transform is accomplished through filters decomposing a provided signal in multiresolution analysis. The detection and localization of disturbances are obtained by decomposing a signal into two other signals that represent, a detailed version (high frequency signals) and a smoothed version (low frequency signals). The smoothed version is decomposed again, and new detailed and smoothed signals are obtained. This process is repeated as many times as necessary and the disturbances can be detected and localized in the time as a function of its level frequency. This information also supplies characteristics to each disturbance, allowing classifying them. Thus, this research presents a way to develop an automatic classifying algorithm of power quality disturbances, based only on multiresolution analysis.
3

Análise de distúrbios relacionados com a qualidade da energia elétrica utilizando a transformada Wavelet / Analysis of power quality disturbances using Wavelet transform

Elcio Franklin de Arruda 07 April 2003 (has links)
O presente trabalho visa a utilização da transformada Wavelet no monitoramento do sistema elétrico no que diz respeito a problemas de qualidade da energia com o intuito de detectar, localizar e classificar os mesmos. A transformada Wavelet tem surgido na literatura como uma nova ferramenta para análise de sinais, utilizando funções chamadas Wavelet mãe para mapear sinais em seu domínio, fornecendo informações simultâneas nos domínios tempo e freqüência. A transformada Wavelet é realizada através de filtros decompondo-se um dado sinal em análise multiresolução. Por esta, obtém-se a detecção e a localização de distúrbios relacionados com a qualidade da energia decompondo-se o sinal em dois outros que representam uma versão de detalhes (correspondente as altas freqüências do sinal) e uma versão de aproximação (correspondente as baixas freqüências do sinal). A versão de aproximação é novamente decomposta obtendo-se novos sinais de detalhes e aproximações e assim sucessivamente. Sendo assim, os distúrbios podem ser detectados e localizados no tempo em função do seu conteúdo de freqüência. Estas informações fornecem também características únicas pertinentes a cada distúrbio, permitindo classificá-los. Desta forma, propõe-se neste trabalho o desenvolvimento de um algoritmo classificador automático de distúrbios relacionados com a qualidade da energia baseado unicamente nas decomposições obtidas da análise multiresolução. / The aim of the present dissertation is to apply the Wavelet transform to analyze power quality problems, detecting, localizing and classifying them. The topic Wavelet transform, has appeared in the literature as a new tool for the analysis of signals, using functions called mother Wavelet to map signals in its domain, supplying information in the time and frequency domain, simultaneously. Wavelet transform is accomplished through filters decomposing a provided signal in multiresolution analysis. The detection and localization of disturbances are obtained by decomposing a signal into two other signals that represent, a detailed version (high frequency signals) and a smoothed version (low frequency signals). The smoothed version is decomposed again, and new detailed and smoothed signals are obtained. This process is repeated as many times as necessary and the disturbances can be detected and localized in the time as a function of its level frequency. This information also supplies characteristics to each disturbance, allowing classifying them. Thus, this research presents a way to develop an automatic classifying algorithm of power quality disturbances, based only on multiresolution analysis.
4

Aplicação de wavelets na análise de gestos musicais em timbres de instrumentos acústicos tradicionais. / Wavelets application on the analysis of musical gestures in timbres of traditional acoustic instruments.

Faria, Regis Rossi Alves 11 September 1997 (has links)
A expressividade é um elemento chave para o transporte de emoções em música, e seu modelamento, vital para a concepção de sistemas de síntese mais realistas. Gestos musicais executados durante a interpretação usualmente portam a informação responsável pela expressividade percebida, e podem ser rastreados por meio de padrões sônicos a eles associados em diversas escalas de resolução. Um conjunto relevante de gestos musicais expressivos foi estudado através de uma análise em multiresolução utilizando-se a transformada wavelet. A escolha deve-se principalmente à capacidade natural desta ferramenta em realizar análises de tempo-escala/frequência, e suas semelhanças com o processamento dos estágios primários do sistema auditivo. Vinte e sete eventos musicais foram capturados em interpretações de violino e flauta, e analisados com o objetivo de avaliar a aplicabilidade desta ferramenta na identificação e segregação de padrões sônicos associados a gestos musicais expressivos. Os algoritmos wavelet foram implementados na plataforma MATLAB utilizando-se bancos de filtros organizados em esquema piramidal. Rotinas para análises gráfica e sônica e uma interface ao usuário foram também implementadas. Verificou-se que as wavelets permitem a identificação de padrões sônicos associados a gestos expressivos exibindo diferentes propriedades em níveis diferentes da análise. A técnica mostrou-se útil para isolar ruídos oriundos de fontes diversas, extrair transientes associados a gestos súbitos e/ou intensos, e para segregar a estrutura harmônica de tons musicais, entre outras potencialidades não menos importantes. Particularidades da técnica e efeitos secundários observados são discutidos, e os padrões sônicos observados nos níveis wavelets são correlacionados com os gestos musicais que lhes deram origem. São propostos trabalhos futuros objetivando a investigação de certos eventos musicais e fenômenos verificados, bem como o estudo de implementações alternativas. / Expressiveness is a key element for emotion transportation in music, and its modeling necessary to conceive more realistic synthesis systems. Musical gestures executed during a performance carry the information answering for expressiveness, and may be tracked by means of sonic patterns associated to them within several resolution scales. A relevant set of musical gestures was studied through a multiresolution analysis using the wavelet transform. The choice for this tool is mainly due to its natural ability to perform time-scale/frequency analysis, and for its similarities with early auditory processing stages. Twenty seven musical events were captured from violin and flute performances, and analyzed in order to evaluate the applicability of this tool for identification and segregation of sonic patterns associated with expressive musical gestures. The wavelet algorithms were implemented on the MATLAB platform, employing filter banks organized in a pyramidal scheme. Graphical and sonic analysis routines and a user interface were carried out over the same platform. It was verified that wavelets enable the identification of sonic patterns associated to musical gestures revealing different properties on different levels of the analysis. The technique showed up useful to isolate noise from different sources, extract transients associated to sudden and/or intense gestures, and segregate the tonal harmonic structure, among other important features. Particularities of the technique and secondary effects observed are discussed, and sonic patterns on wavelet levels are correlated with the musical gestures which produced them. Future works are proposed addressing further investigation of certain musical events and phenomena observed, as well as the study of alternative implementations.
5

Aplicação de wavelets na análise de gestos musicais em timbres de instrumentos acústicos tradicionais. / Wavelets application on the analysis of musical gestures in timbres of traditional acoustic instruments.

Regis Rossi Alves Faria 11 September 1997 (has links)
A expressividade é um elemento chave para o transporte de emoções em música, e seu modelamento, vital para a concepção de sistemas de síntese mais realistas. Gestos musicais executados durante a interpretação usualmente portam a informação responsável pela expressividade percebida, e podem ser rastreados por meio de padrões sônicos a eles associados em diversas escalas de resolução. Um conjunto relevante de gestos musicais expressivos foi estudado através de uma análise em multiresolução utilizando-se a transformada wavelet. A escolha deve-se principalmente à capacidade natural desta ferramenta em realizar análises de tempo-escala/frequência, e suas semelhanças com o processamento dos estágios primários do sistema auditivo. Vinte e sete eventos musicais foram capturados em interpretações de violino e flauta, e analisados com o objetivo de avaliar a aplicabilidade desta ferramenta na identificação e segregação de padrões sônicos associados a gestos musicais expressivos. Os algoritmos wavelet foram implementados na plataforma MATLAB utilizando-se bancos de filtros organizados em esquema piramidal. Rotinas para análises gráfica e sônica e uma interface ao usuário foram também implementadas. Verificou-se que as wavelets permitem a identificação de padrões sônicos associados a gestos expressivos exibindo diferentes propriedades em níveis diferentes da análise. A técnica mostrou-se útil para isolar ruídos oriundos de fontes diversas, extrair transientes associados a gestos súbitos e/ou intensos, e para segregar a estrutura harmônica de tons musicais, entre outras potencialidades não menos importantes. Particularidades da técnica e efeitos secundários observados são discutidos, e os padrões sônicos observados nos níveis wavelets são correlacionados com os gestos musicais que lhes deram origem. São propostos trabalhos futuros objetivando a investigação de certos eventos musicais e fenômenos verificados, bem como o estudo de implementações alternativas. / Expressiveness is a key element for emotion transportation in music, and its modeling necessary to conceive more realistic synthesis systems. Musical gestures executed during a performance carry the information answering for expressiveness, and may be tracked by means of sonic patterns associated to them within several resolution scales. A relevant set of musical gestures was studied through a multiresolution analysis using the wavelet transform. The choice for this tool is mainly due to its natural ability to perform time-scale/frequency analysis, and for its similarities with early auditory processing stages. Twenty seven musical events were captured from violin and flute performances, and analyzed in order to evaluate the applicability of this tool for identification and segregation of sonic patterns associated with expressive musical gestures. The wavelet algorithms were implemented on the MATLAB platform, employing filter banks organized in a pyramidal scheme. Graphical and sonic analysis routines and a user interface were carried out over the same platform. It was verified that wavelets enable the identification of sonic patterns associated to musical gestures revealing different properties on different levels of the analysis. The technique showed up useful to isolate noise from different sources, extract transients associated to sudden and/or intense gestures, and segregate the tonal harmonic structure, among other important features. Particularities of the technique and secondary effects observed are discussed, and sonic patterns on wavelet levels are correlated with the musical gestures which produced them. Future works are proposed addressing further investigation of certain musical events and phenomena observed, as well as the study of alternative implementations.
6

Sistema híbrido para diagnóstico de falhas em motores de indução trifásicos com base no método vibracional, corrente de armadura e lógica fuzzy

Cruz, Amanda Guerra de Araújo 26 October 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2017-05-24T12:51:24Z No. of bitstreams: 1 arquivototal.pdf: 2705219 bytes, checksum: cb06011410866630871a99b2788703f1 (MD5) / Made available in DSpace on 2017-05-24T12:51:24Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2705219 bytes, checksum: cb06011410866630871a99b2788703f1 (MD5) Previous issue date: 2015-10-26 / The three-phase induction motors are the most important way for electromechanical conversion, being present in almost every industrial process. Because of their importance, it is crucial that these devices have a proper predictive maintenance, avoiding lost production and operational accidents in the event of unexpected failures. In this scenario several researchers have conducted studies to detect incipient faults. About the sensing method used, the most common techniques are related to measuring the vibration levels using accelerometers and measuring electrical motor signals. The choice of technique involves factors such as invasiveness, drive motor type and the sensitivity to failure. The purpose of this work involves the development of a hybrid system that uses data collected by vibration and current sensors for fault detection in induction motors, earlier and more efficiently. The current and vibration signals were processed in the frequency domain and through the multiresolution analysis, serving as inputs of a fuzzy logic system, allowing to increase the sensitivity and efficiency in fault detection techniques in relation to the individual. The unbalance failure was investigated on a workbench with the motor coupled to a propeller and broken bars with another bench with DC motor to apply the load, the best methods being chosen in each case. The system was developed in Matlab software and was validated with correct detection for both failures, being able to detect the unbalance failure on the shaft or propeller as broken bars in different load conditions. / O motor de indução trifásico é o principal meio de conversão eletromecânica existente, estando presente em praticamente todos os processos industriais. Devido à sua importância, é fundamental que estes equipamentos tenham uma correta manutenção preditiva, evitando perda de produção e acidentes operacionais em caso de falhas inesperadas. Diante deste cenário vários pesquisadores têm realizado estudos para detecção de falhas incipientes. Quanto ao método sensor utilizado, as técnicas mais comuns estão relacionadas a medição dos níveis de vibração utilizando acelerômetros e medição de sinais elétricos do motor. A escolha da técnica envolve fatores como a invasividade, tipo de acionamento do motor e a sensibilidade à falha. A proposta deste trabalho envolve o desenvolvimento de um sistema híbrido que utilize dados coletados por sensores de vibração e de corrente para detecção de falhas incipientes em motores de indução trifásicos de maneira mais precoce e eficiente. Os sinais de corrente e de vibração foram processados no domínio da frequência pela transformada de Fourier e através da análise multiresolução, servindo como entrada para sistemas de lógica Fuzzy, permitindo que se aumente a eficiência na detecção da falha em relação às técnicas individuais. Foi investigada a falha de desbalanceamento em uma bancada com o motor acoplado a uma hélice e barras quebradas em outra bancada com motor de corrente contínua acoplado para aplicar a carga, sendo escolhidos os melhores métodos em cada caso. O sistema foi desenvolvido no software Matlab e foi validado através de diagnósticos corretos para ambas as falhas, sendo capaz de detectar a falha de desbalanceamento tanto na hélice quanto no eixo e de barras quebradas em diferentes condições de carga.
7

Utilização da transformada Wavelet para caracterização de distúrbios na qualidade da energia elétrica / Use of the Wavelet transform for the characterization of disturbances in the power quality

Delmont Filho, Odilon 22 September 2003 (has links)
Este trabalho apresenta um estudo sobre transformada Wavelet aplicada à qualidade da energia elétrica com o intuito de detectar, localizar e classificar eventuais distúrbios que ocorrem no sistema elétrico. Inicialmente é apresentada uma introdução sobre qualidade da energia, mostrando fatos, evoluções e explicando o conceito dos principais fenômenos que interferem na qualidade da energia do sistema elétrico brasileiro, devido, principalmente, à grande demanda de aparelhos eletrônicos produzidos atualmente. Em seguida é mostrada uma revisão dos principais métodos e modelos aplicados atualmente no mundo a respeito do assunto. A transformada Wavelet vem como uma grande ajuda nesta área de análise de sinais, já que é capaz de extrair simultaneamente informações de tempo e freqüência, diferentemente da transformada de Fourier. A simulação dos diversos distúrbios ocorridos no sistema foi realizada através do software ATP (Alternative Transients Program), cujas características seguem corretamente um sistema de distribuição real da concessionária CPFL. Os distúrbios de tensão gerados e analisados foram detectados e localizados através da técnica de Análise Multiresolução e, posteriormente, classificados, utilizando para isto o método da Curva de Desvio Padrão / This dissertation presents a study of Wavelet transform applied to power quality in order to detect, locate and classify disturbances that may occur in the power system. Initially an introduction of power quality is presented, showing facts, evolutions and explaining the concept of the main phenomena that interfere the on power quality of the brazilian power system, due to, mainly, a great demand for electronic devices produced nowadays. A revision of the main methods and models currently applied in the world regarding this subject is also show. The Wavelet transform comes as a great support in the area of signal assessment, as it can extract information about time and frequency simultaneously, differently from the Fourier transform. The simulation of the diverse disturbances occurred in the system was accomplished through ATP software (Alternative Transients Program), whose characteristics correctly follow a system of real distribution of CPFL eletric utility. The generated and analyzed voltage disturbances were detected and located by Multiresolution Analysis technique and later classified by the method of the Standard Deviation
8

Um algoritmo para detecção, localização e classificação de distúrbios na qualidade da energia elétrica utilizando a transformada wavelet / Detection, localization and classification algorithm for power quality disturbances using wavelet transform

Delmont Filho, Odilon 07 May 2007 (has links)
A Qualidade da energia elétrica é caracterizada pela disponibilidade da energia através de uma forma de onda senoidal pura, sem alterações na amplitude e freqüência. No entanto situações transitórias em sistemas de potência são comuns e estas podem provocar inúmeras interferências indesejáveis. Neste contexto, este trabalho tem como objetivo desenvolver um algoritmo para detectar, localizar no tempo e classificar diversos distúrbios que ocorrem no sistema elétrico através da aplicação da transformada wavelet (TW). Foi realizado um estudo teórico desde a origem até os recentes avanços sobre a TW. Para a detecção e localização no tempo foi utilizada apenas a TW. Com relação à classificação foram comparadas três ferramentas matemáticas: TW, TRF (Transformada Rápida de Fourier) e RNA (Redes Neurais Artificiais). Através do software ATP (Alternative Transients Program) foi modelado um sistema de distribuição, cujas características seguem um sistema real. Todos os distúrbios de tensão gerados e analisados puderam ser detectados e localizados no tempo através da técnica de análise multiresolução. Em relação à classificação, foi realizada uma comparação entre a TW, a TRF e RNA com resultados satisfatórios, destacando dentre elas a TRF e a RNA. Pode-se concluir que os resultados obtidos através do algoritmo mostraram-se eficientes tanto no aspecto da detecção, localização e classificação, assim como na estimação da amplitude do distúrbio e da duração do distúrbio. / A perfect power supply would be one that is always available, maintaining the supply voltage and frequency within certain limits, and supplying pure noise free sinusoidal waveform. Nevertheless, transient events are usual in power systems, resulting in several interferences. The purpose of this study is for detecting, locating in time and to classifying with wavelet transform (WT) several disturbances that occur on power systems. A WT theoretical revision, referring to the first mention in wavelet up to the recent research advances is presented. Only WT was used in order to detect and locate in time the power system disturbances. For classification, three mathematical tools were compared: WT, FFT (Fast Fourier Transform) and ANN (Artificial Neural Networks). A distribution System, with identical characteristics as the real distribution system, was performed with ATP software (Alternative Transients Program). The results showed that multiresolution analysis technique is able to detect and locate all the generated and analyzed voltage disturbances. For classification the results were similar for the WT, FFT and ANN, however FFT and ANN results presented a better performance. The results conclude that the WT algorithm is efficient at detecting, localizing and classifying power system disturbances, as well as, at estimating the amplitude and duration of the voltage disturbance.
9

Um algoritmo para detecção, localização e classificação de distúrbios na qualidade da energia elétrica utilizando a transformada wavelet / Detection, localization and classification algorithm for power quality disturbances using wavelet transform

Odilon Delmont Filho 07 May 2007 (has links)
A Qualidade da energia elétrica é caracterizada pela disponibilidade da energia através de uma forma de onda senoidal pura, sem alterações na amplitude e freqüência. No entanto situações transitórias em sistemas de potência são comuns e estas podem provocar inúmeras interferências indesejáveis. Neste contexto, este trabalho tem como objetivo desenvolver um algoritmo para detectar, localizar no tempo e classificar diversos distúrbios que ocorrem no sistema elétrico através da aplicação da transformada wavelet (TW). Foi realizado um estudo teórico desde a origem até os recentes avanços sobre a TW. Para a detecção e localização no tempo foi utilizada apenas a TW. Com relação à classificação foram comparadas três ferramentas matemáticas: TW, TRF (Transformada Rápida de Fourier) e RNA (Redes Neurais Artificiais). Através do software ATP (Alternative Transients Program) foi modelado um sistema de distribuição, cujas características seguem um sistema real. Todos os distúrbios de tensão gerados e analisados puderam ser detectados e localizados no tempo através da técnica de análise multiresolução. Em relação à classificação, foi realizada uma comparação entre a TW, a TRF e RNA com resultados satisfatórios, destacando dentre elas a TRF e a RNA. Pode-se concluir que os resultados obtidos através do algoritmo mostraram-se eficientes tanto no aspecto da detecção, localização e classificação, assim como na estimação da amplitude do distúrbio e da duração do distúrbio. / A perfect power supply would be one that is always available, maintaining the supply voltage and frequency within certain limits, and supplying pure noise free sinusoidal waveform. Nevertheless, transient events are usual in power systems, resulting in several interferences. The purpose of this study is for detecting, locating in time and to classifying with wavelet transform (WT) several disturbances that occur on power systems. A WT theoretical revision, referring to the first mention in wavelet up to the recent research advances is presented. Only WT was used in order to detect and locate in time the power system disturbances. For classification, three mathematical tools were compared: WT, FFT (Fast Fourier Transform) and ANN (Artificial Neural Networks). A distribution System, with identical characteristics as the real distribution system, was performed with ATP software (Alternative Transients Program). The results showed that multiresolution analysis technique is able to detect and locate all the generated and analyzed voltage disturbances. For classification the results were similar for the WT, FFT and ANN, however FFT and ANN results presented a better performance. The results conclude that the WT algorithm is efficient at detecting, localizing and classifying power system disturbances, as well as, at estimating the amplitude and duration of the voltage disturbance.
10

Utilização da transformada Wavelet para caracterização de distúrbios na qualidade da energia elétrica / Use of the Wavelet transform for the characterization of disturbances in the power quality

Odilon Delmont Filho 22 September 2003 (has links)
Este trabalho apresenta um estudo sobre transformada Wavelet aplicada à qualidade da energia elétrica com o intuito de detectar, localizar e classificar eventuais distúrbios que ocorrem no sistema elétrico. Inicialmente é apresentada uma introdução sobre qualidade da energia, mostrando fatos, evoluções e explicando o conceito dos principais fenômenos que interferem na qualidade da energia do sistema elétrico brasileiro, devido, principalmente, à grande demanda de aparelhos eletrônicos produzidos atualmente. Em seguida é mostrada uma revisão dos principais métodos e modelos aplicados atualmente no mundo a respeito do assunto. A transformada Wavelet vem como uma grande ajuda nesta área de análise de sinais, já que é capaz de extrair simultaneamente informações de tempo e freqüência, diferentemente da transformada de Fourier. A simulação dos diversos distúrbios ocorridos no sistema foi realizada através do software ATP (Alternative Transients Program), cujas características seguem corretamente um sistema de distribuição real da concessionária CPFL. Os distúrbios de tensão gerados e analisados foram detectados e localizados através da técnica de Análise Multiresolução e, posteriormente, classificados, utilizando para isto o método da Curva de Desvio Padrão / This dissertation presents a study of Wavelet transform applied to power quality in order to detect, locate and classify disturbances that may occur in the power system. Initially an introduction of power quality is presented, showing facts, evolutions and explaining the concept of the main phenomena that interfere the on power quality of the brazilian power system, due to, mainly, a great demand for electronic devices produced nowadays. A revision of the main methods and models currently applied in the world regarding this subject is also show. The Wavelet transform comes as a great support in the area of signal assessment, as it can extract information about time and frequency simultaneously, differently from the Fourier transform. The simulation of the diverse disturbances occurred in the system was accomplished through ATP software (Alternative Transients Program), whose characteristics correctly follow a system of real distribution of CPFL eletric utility. The generated and analyzed voltage disturbances were detected and located by Multiresolution Analysis technique and later classified by the method of the Standard Deviation

Page generated in 0.0742 seconds