• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 245
  • 143
  • 45
  • 25
  • 12
  • 8
  • 8
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 586
  • 586
  • 176
  • 142
  • 116
  • 115
  • 113
  • 91
  • 89
  • 81
  • 77
  • 70
  • 68
  • 59
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The role of anaerobic digestion in achieving soil conservation and sustainable agriculture for sustainable development in the UK

Duruiheoma, Franklin I. January 2015 (has links)
The subjection of soils to degradation directly and indirectly from rising world food demand and resultant intensified agricultural production, population growth, and climate change, demand that soils are better protected. The role of AD in addressing this challenge is examined using a pragmatic research paradigm and the questions: How can we raise awareness of AD in the UK? What factors motivate and hinder farmers towards adopting improved technology and sustainable agricultural practises? What is the perception of farmers about soils? To what extent does sustainable agriculture incorporate soil conservation in theory and practice? What role can legislation and policies play in AD adoption in the UK? The research was in two phases; qualitative and quantitative. The qualitative phase involved interviews with 21 AD stakeholder in the UK using electronic mail. The stakeholders who were divided into groups according to their expertise, were interviewed to explore their views on the areas of focus in the UK strategy and action plan regarding raising awareness of the technology, soil conservation, sustainable agriculture and sustainable development. Thematic analysis of interview data was carried out using MAXQDA 11 statistical software. The quantitative phase involved an online survey of 283 UK farmers aided by Yellow Pages directory for UK, Natural England directory, Twitter and electronic mail. Using SPSS 22.0 statistical software, the Chi square test was used to check for relationships between the variables measured at 95% confidence level (p < .05). Relationship strength was measured by means of Cramer’s V and Phi values. Answers to the 1st research question showed that: aligning AD with sustainable development goals, community AD and localism, small AD plants, provision of an available market for AD products, building UK skills and diversifying biogas use from AD are positive options for raising awareness of AD. Response to 2nd research question revealed: significant relationships between interests in agricultural technology and gender, level of education, and farm size; between knowledge of what AD is and gender, level of education and farm size; between interest in AD and age; between willingness to invest in AD if it improved soil properties and farm ownership; and between organic farming practice and age, farm type and farm size. Responding to the third research question, farmers’ describe soils in abstract, scientific, physical attribute and functional terms; awareness of soil benefits other than crop production was significantly related to age, and farm ownership; educational level was significantly related to familiarity with soil conservation, and opinion on whether soil should be protected like other natural resources. Findings regarding the 4th and 5th research questions showed: limited understanding of soil matters as a key challenge that has restricted the priority given to soil conservation, while level of education, knowledge of soil conservation and sustainable development and understanding of sustainable agriculture were also identified as influencing factors; digestate from AD is the main benefit viewed to contribute to soil conservation; finance, policy and legislation, low awareness and understanding, lack of feedstock and market, land use conflict and inefficiency of AD plants were identified as barriers to AD in the UK; promoting AD, providing finance, minimizing bureaucracy and simplification of AD systems are options for promoting AD adoption. This thesis also documents the implications of these findings for knowledge, policy and practice, and based on these recommendations are made, some of which are: better engagement of farmers in policy development for AD and soil management; use of small AD plants, demonstration, networking and training for AD adoption; promote soil conservation in theory and practice; and provision of enhanced support for owners, potential investors and farmers through incentives, simplified planning approval process, and available market for AD product.
32

Estudo da acidogênese e metanogênese aplicada no tratamento da vinhaça da cana-de-açúcar

Peruzzo, Vanessa Verona 22 June 2017 (has links)
A vinhaça, água residuária do processo, apresenta em sua composição DQO de 20 a 100 g DQO.L-1 e um ótimo potencial de produção de biogás por meio da digestão anaeróbia. Para avaliar a capacidade de produção de biogás, foram realizados experimentos sob o efeito gradual da carga orgânica volumétrica (COV) e da relação A/M, avaliando a etapa metanogênica. Como no processo de fabricação do etanol é adicionado ácido sulfúrico para evitar a contaminação bacteriana, foi avaliado a interferência da adição de diferentes concentrações de sulfetos no processo em valore de pH 7,0 e 7,5. O fermentador foi alimentado com Na2S.9H2O, variando a concentração do íon S2- de 0 a 1000 mg.L-1. Para obter uma boa eficiência na produção de metano, a etapa acidogênica também foi avaliada. Para isso, se manteve as mesmas concentrações de biomassa e substrato, porém, ajustando os valores de pH em 5,0, 5,5, 6,0 e 6,5. Na etapa metanogênica uma satisfatória redução da elevada carga orgânica presente na vinhaça foi alcançada, com eficiência de remoção entre 82,0% e 90,3% em processo mesofílico. Um ajuste polinomial foi realizado para avaliar a produção específica de metano, que variou de 379 mL CH4.h-1 a 872 mL CH4.h-1 e atividade metanogênica de 0,33 mmol CH4.gSVT-1 h-1 a 0,77 mmol CH4.gSVT-1 h-1. Para a etapa da sulfetogênese, o pH afetou consideravelmente o desempenho das arqueas metanogênicas, ocorrendo inibição mais acentuada para o pH 7,5. Na concentração mais baixa testada, de 50 mg S2-.L-1, foi observada inibição de 31,85% para pH 7,0 e de 67% para pH 7,5 e para a concentração mais elevada de 1000 mg S2-.L-1 a inibição foi de 59,75% e de 94,07% respectivamente. Na última etapa da acidogênese, maiores concentrações de ácido propiônico e acético foram alcançadas em pH 5,0 e 5,5, com 1374,66 e 1477,23 mg C3H6O2.L-1 e 993,05 e 767,80 mg CH3COOH.L-1. Maiores taxas de produção de AGV ocorreram em pH 6,5, alcançando para o ácido propiônico 8,82 mmol.d-1 gSVT-1 e 7,99 mmol.d-1 gSVT-1 para ácido acético. A produção acumulada de metano nas primeiras 60 horas atingiu 2210 mL, 5300 mL, 7210 mL e 7620 mL CH4, respectivamente para pH 5,0, 5,5, 6,0 e / Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2017-07-12T18:44:50Z No. of bitstreams: 1 Dissertacao Vanessa Verona Peruzzo.pdf: 3017795 bytes, checksum: 5aad4de95a823b85afe45b94c6cd1fc0 (MD5) / Made available in DSpace on 2017-07-12T18:44:50Z (GMT). No. of bitstreams: 1 Dissertacao Vanessa Verona Peruzzo.pdf: 3017795 bytes, checksum: 5aad4de95a823b85afe45b94c6cd1fc0 (MD5) Previous issue date: 2017-07-12 / Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguêz de Mello, CENPES. / The vinasse, wastewater of the process, presents in its composition a COD of 20 to 100 g COD.L-1 and an excellent biogas production potential through anaerobic digestion. To evaluate the biogas production capacity, experiments were carried out under the gradual effect of organic volumetric load (OVL) and A/M ratio, evaluating the methanogenic step. Considering that sulfuric acid is added to the ethanol production process to prevent bacterial contamination, the interference of the addition of different sulfide concentrations in the process at pH 7.0 and 7.5 was evaluated. The fermenter was fed with Na2S.9H2O, varying the concentration of the S2- ion from 0 to 1000 mg.L-1. In order to obtain good efficiency in the production of methane, the acidogenic step was also evaluated. For this, the same concentrations of biomass and substrate were maintained, however, the pH to was adjusted 5.0, 5.5, 6.0 and 6.5. In the methanogenic stage a satisfactory reduction of the organic load present in the vinasse was achieved, with removal efficiency in the range of 82.0% and 90.3% for mesophilic process. A polynomial fit was performed to evaluate the specific production of methane, ranging from 379 mL CH4.h-1 to 872 mL CH4.h-1 and a methanogenic activity of 0.33 mmol CH4.gSVT-1 h-1 at 0.77 mmol CH4.g SVT-1 h-1. For the sulfetogenic stage, the pH considerably affected the performance of the methanogenic archaea, with a more pronounced inhibition at pH 7.5. The lowest concentration tested, 50 mg S2-.L-1, resulted in an inhibition of 31.85% inhibition pH 7.0 and 67% at pH 7.5. The highest concentration, 1000 mg S2-.L-1, the inhibition was 59.75% and 94.07% respectively. Higher concentrations of propionic and acetic acid were reached at pH 5.0 and 5.5, with 1374.66 and 1477.23 mg C3H6O2.L-1 and 993.05 and 767.80 mg CH3COOH.L-1. Higher rates of VFA production occurred at pH 6.5, yielding 8.82 mmol.d-1 gSVT-1 and 7.99 mmol.d-1 gSVT-1 for acetic acid for propionic acid. Cumulative methane production in the first 60 hours increased 2210 mL, 5300 mL, 7210 mL and 7620 mL CH4, respectively to pH 5.0, 5.5, 6.0 and 6.5.
33

Estudo da acidogênese e metanogênese aplicada no tratamento da vinhaça da cana-de-açúcar

Peruzzo, Vanessa Verona 22 June 2017 (has links)
A vinhaça, água residuária do processo, apresenta em sua composição DQO de 20 a 100 g DQO.L-1 e um ótimo potencial de produção de biogás por meio da digestão anaeróbia. Para avaliar a capacidade de produção de biogás, foram realizados experimentos sob o efeito gradual da carga orgânica volumétrica (COV) e da relação A/M, avaliando a etapa metanogênica. Como no processo de fabricação do etanol é adicionado ácido sulfúrico para evitar a contaminação bacteriana, foi avaliado a interferência da adição de diferentes concentrações de sulfetos no processo em valore de pH 7,0 e 7,5. O fermentador foi alimentado com Na2S.9H2O, variando a concentração do íon S2- de 0 a 1000 mg.L-1. Para obter uma boa eficiência na produção de metano, a etapa acidogênica também foi avaliada. Para isso, se manteve as mesmas concentrações de biomassa e substrato, porém, ajustando os valores de pH em 5,0, 5,5, 6,0 e 6,5. Na etapa metanogênica uma satisfatória redução da elevada carga orgânica presente na vinhaça foi alcançada, com eficiência de remoção entre 82,0% e 90,3% em processo mesofílico. Um ajuste polinomial foi realizado para avaliar a produção específica de metano, que variou de 379 mL CH4.h-1 a 872 mL CH4.h-1 e atividade metanogênica de 0,33 mmol CH4.gSVT-1 h-1 a 0,77 mmol CH4.gSVT-1 h-1. Para a etapa da sulfetogênese, o pH afetou consideravelmente o desempenho das arqueas metanogênicas, ocorrendo inibição mais acentuada para o pH 7,5. Na concentração mais baixa testada, de 50 mg S2-.L-1, foi observada inibição de 31,85% para pH 7,0 e de 67% para pH 7,5 e para a concentração mais elevada de 1000 mg S2-.L-1 a inibição foi de 59,75% e de 94,07% respectivamente. Na última etapa da acidogênese, maiores concentrações de ácido propiônico e acético foram alcançadas em pH 5,0 e 5,5, com 1374,66 e 1477,23 mg C3H6O2.L-1 e 993,05 e 767,80 mg CH3COOH.L-1. Maiores taxas de produção de AGV ocorreram em pH 6,5, alcançando para o ácido propiônico 8,82 mmol.d-1 gSVT-1 e 7,99 mmol.d-1 gSVT-1 para ácido acético. A produção acumulada de metano nas primeiras 60 horas atingiu 2210 mL, 5300 mL, 7210 mL e 7620 mL CH4, respectivamente para pH 5,0, 5,5, 6,0 e / Centro de Pesquisa e Desenvolvimento Leopoldo Américo Miguêz de Mello, CENPES. / The vinasse, wastewater of the process, presents in its composition a COD of 20 to 100 g COD.L-1 and an excellent biogas production potential through anaerobic digestion. To evaluate the biogas production capacity, experiments were carried out under the gradual effect of organic volumetric load (OVL) and A/M ratio, evaluating the methanogenic step. Considering that sulfuric acid is added to the ethanol production process to prevent bacterial contamination, the interference of the addition of different sulfide concentrations in the process at pH 7.0 and 7.5 was evaluated. The fermenter was fed with Na2S.9H2O, varying the concentration of the S2- ion from 0 to 1000 mg.L-1. In order to obtain good efficiency in the production of methane, the acidogenic step was also evaluated. For this, the same concentrations of biomass and substrate were maintained, however, the pH to was adjusted 5.0, 5.5, 6.0 and 6.5. In the methanogenic stage a satisfactory reduction of the organic load present in the vinasse was achieved, with removal efficiency in the range of 82.0% and 90.3% for mesophilic process. A polynomial fit was performed to evaluate the specific production of methane, ranging from 379 mL CH4.h-1 to 872 mL CH4.h-1 and a methanogenic activity of 0.33 mmol CH4.gSVT-1 h-1 at 0.77 mmol CH4.g SVT-1 h-1. For the sulfetogenic stage, the pH considerably affected the performance of the methanogenic archaea, with a more pronounced inhibition at pH 7.5. The lowest concentration tested, 50 mg S2-.L-1, resulted in an inhibition of 31.85% inhibition pH 7.0 and 67% at pH 7.5. The highest concentration, 1000 mg S2-.L-1, the inhibition was 59.75% and 94.07% respectively. Higher concentrations of propionic and acetic acid were reached at pH 5.0 and 5.5, with 1374.66 and 1477.23 mg C3H6O2.L-1 and 993.05 and 767.80 mg CH3COOH.L-1. Higher rates of VFA production occurred at pH 6.5, yielding 8.82 mmol.d-1 gSVT-1 and 7.99 mmol.d-1 gSVT-1 for acetic acid for propionic acid. Cumulative methane production in the first 60 hours increased 2210 mL, 5300 mL, 7210 mL and 7620 mL CH4, respectively to pH 5.0, 5.5, 6.0 and 6.5.
34

Modeling and simulation of existing biogas plants with SIMBA#Biogas

Karlsson, Jonas January 2017 (has links)
The main purpose of this project was an attempt to modulate and simulate two existing biogas plant, situated in Lidköping and Katrineholm, Sweden and evaluate how the process reacts to certain conditions regarding feeding, layout and substrate mixture. The main goal was to optimize the existing processes to better performance. Both the modeling and simulation were executed in SIMBA#Biogas with accordance to the real conditions at the plant in question. The simulation of each model was validated against data containing measurements of, CH4 yield, CH4 production, TS, VS, NH4-N concentration and N-total concentration. The data was obtained from each plant in accordance with scheduled follow ups. Both models were statistically validated for several predictions. Predictions of N-total and NH4-N concentration failed for some cases. Both plants were tested with new process lay outs, where promising results were obtained. The Lidköping model was provided with a post-hygienization step to handle ABPs. The Katrineholm model was provided with a dewatering unit, where 35% of the centrate was recirculated back to the system. Both setups was configured to yield the highest CH4 production. This study suggests that SIMBA#Biogas can be a tool for predictions and optimizations of the biogas process.
35

Enhancement of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste by Microwave Pretreatment

Shahriari Zavareh, Haleh January 2011 (has links)
This study evaluates the enhancement of anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) by microwave pretreatment (MW) at high temperatures (115, 145 and 175°C). The highest level of solubilization was achieved at 175ºC, with a supplemental water addition of 30% (SWA30). Pretreatments combining two modalities; MW heating in presence or absence of hydrogen peroxide (H2O2) was also investigated. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW, as well as on the liquid fractions. The whole OFMSW pretreated at 115 and 145 ºC showed little improvement in biogas production over control. When pretreated at 175 ºC, biogas production decreased due to formation of refractory compounds, inhibiting digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for supplemental water addition of 20% (SWA20) at 145 ºC. Combining MW and H2O2 modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. Based on the BMP assay results, the effects of MW pretreatment (145 ºC) on the AD of OFMSW (SWA20) were further evaluated in single and dual stage semi-continuous digesters at hydraulic retention times (HRTs) of 20, 15, 12 and 9 days. Overall, MW pretreatment did not enhance the AD of the whole waste at the HRTs tested. However, the use of a dual stage reactor digesting non pretreated whole OFMSW had the best performance with the shortest HRT of 9 days. Conversely, for free liquid after pretreatment in two stage reactors at 20 day HRT methane production was tripled. In general, the performance of the dual stage digesters surpassed that of the single stage reactors. Cyclic BMP assays indicated that using an appropriate fraction of recycled effluent leachate can be implemented without negatively effecting methanogenic activity and biogas production. Based on the results obtained in this study, digestion of OFMSW by dual stage reactors without pretreatment appears to provide the best potential for waste stabilization in terms of biogas production and yield, process stability and volumetric loading rates.
36

Application of Microwaves and Thermophilic Anaerobic Digestion to Wastewater Sludge Treatment

Gabriel Coelho, Nuno Miguel January 2012 (has links)
Anaerobic digestion of waste activated sludge can be improved if hydrolysis of particulate substrates is enhanced and available substrate is made more accessible by both breakup of the sludge matrix floc and rupture of the cell wall. Microwave (MW) pretreatment was suggested and studied as a way to improve digestion efficiency. The work done focuses on the effects of MW pretreatment on the characteristics of the sludge, due to thermal and athermal effects. It also evaluates the effects some process variables in the activated sludge process have on the pretreatment efficiency as well as the effect operating conditions in the downstream anaerobic digestion process have on the biodegradability efficiency of those sludges. Effects of athermal and thermal MW radiation were measured by use of a customized MW oven capable of providing MW radiation with uncoupled thermal and athermal effects. Athermal radiation was capable of increasing substrate present in the soluble phase of sludge, and had a positive effect in the digestion of athermal samples. The increases in biogas production and substrate solubilisation were smaller in magnitude than the increases measured for MW thermal tests. Further refining of the tests with athermal and thermal sludge, involved separation by size class of the solubilized substrate by means of ultrafiltration (UF), and revealed that changes in particle size distribution were significant not only for MW thermal tests, but also for athermal tests, with a particular emphasis in proteins in athermal tests. These changes had an effect on the biodegradability of the sludges by class size, with thermally pretreated sludge producing more biogas for smaller particles size classes but also exhibiting more inhibition. Tests were made with several combinations of sludge with different ages and subject to different MW pretreatment temperatures. The work showed that sludge age or solids retention time (SRT) has a significant effect on the pretreatment efficiency with maximum biogas improvements measured at different MW pretreatment temperatures depending on the SRT of the sludge tested, and with different behaviour for mesophilic and thermophilic digestion. Mesophilic tests showed greater improvements in terms of digestion effiency on average, but thermophilic tests showed more uniform performance, with a higher baseline efficiency. The presence of an optimum of MW pretreatment temperature and sludge SRT for maximal biogas production is more defined for mesophilic conditions than for thermophilic conditions. Semi-continuous studies were conducted with several combinations of single and two stage mesophilic and thermophilic digestors treating MW pretreated sludge and non-pretreated sludge. Staging and thermophilic digestion allowed the maintenance of a stable digestion process with high biogas productions and high solids removal efficiencies with production of sludge with good bacteriological characteristics for an very low residence time (5 d).
37

Monitoring anaerobic digestion of animal slurry during inhibition and recovery phases

Moset Hernández, Verónica 07 December 2012 (has links)
Esta tesis doctoral se centra en la dinámica de la inhibición y la recuperación del proceso de digestión anaerobia de purines de cerdo para encontrar indicadores, predecir fallos del proceso, minimizar las pérdidas de metano (CH4) y evaluar las mejores prácticas de gestión a nivel de la planta de biogás. Para cumplir con este objetivo, cinco ensayos fueron diseñados y ejecutados. En primer lugar, se diseñó un experimento para controlar los cambios físico-químicos y de emisión de gas de dos tipos de purines envejecidos durante 15 semanas de almacenamiento en condiciones de verano. En segundo lugar, diferentes concentraciones de sulfato (SO42-) fueron evaluadas en digestión anaerobia termofílica de purines de cerdo y vacuno controlando la producción de CH4 y los cambios fisicoquímicos en un ensayo en discontinuo. Así mismo, la degradación anaeróbica de la materia orgánica (MO) y el límite de inhibición de SO42- fueron investigados. En tercer lugar, los efectos de incluir purines de cerdo acidificados con SO42- en un codigestión anaerobia con purines de cerdo convencionales se estudió a dos escalas (a escala laboratorio y a gran escala), donde se evaluó el rendimiento del proceso. Así mismo, los indicadores clave del proceso fueron identificados. En cuarto lugar, una combinación de dos métodos, reacción en cadena de la polimerasa cuantitativa en tiempo real (qPCR) y microscopía electrónica de barrido cualitativa (SEM) fueron utilizados para evaluar los cambios en la población microbiana de los digestores anaerobios durante la adición de los purines. Finalmente, el rendimiento de CH4, la composición físico-química y la estructura y dinámica de la comunidad microbiológica fueron evaluadas durante la puesta en marcha de la digestión anaerobia de purines de cerdo a escala de laboratorio. Se evaluaron cuatro estrategias de puesta en marcha: inanición y no inanición, seguida de una adición gradual o brusca de los purines. Los resultados presentados en esta tesis doctoral per / Moset Hernández, V. (2012). Monitoring anaerobic digestion of animal slurry during inhibition and recovery phases [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18069 / Palancia
38

Waste Heat Utilization in an Anaerobic Digestion System

Boissevain, Brett 01 August 2012 (has links)
Anaerobic digestion has great potential as an energy source. Not only does it provide an effective method for waste mitigation, but it has the potential to generate significant quantities of fuel and electricity. In order to ensure efficient digestion and biomass utilization, however, the system must be continuously maintained at elevated temperatures. It is technically feasible to supplement such a system with outside energy, but it is more cost effective to heat the system using only the produced biogas. While there is considerable literature covering the theory of anaerobic digestion, there are very few practical studies to show how heat utilization affects system operation. This study considers the effect of major design variables (i.e. heat exchanger efficiencies and biogas conditioning) on promoting a completely self-sustaining digestion system. The thesis considers a real world system and analyzes how it can be improved to avoid the need of an external energy source.
39

OPTIMIZING POLYMER ASSISTED DEWATERING IN RECUPERATIVE THICKENING VIA A LAB-SCALE SYSTEM FOR ENHANCED BIOGAS PRODUCTION IN ANAEROBIC DIGESTION PROCESSES

Cobbledick, Jeffrey January 2016 (has links)
There is growing interest in the use of high performance anaerobic digestion (AD) processes for the production of biogas at wastewater treatment facilities to offset the energy demands associated with wastewater treatment. Recuperative thickening (RT) is a promising technique which involves recycling a portion of the digested solids back to the incoming feed. In general there exists a significant number of knowledge gaps in the field of RT because the studies that have been conducted to date have almost exclusively occurred in pilot or full scale trials; this approach greatly limits the amount of process optimization that can be done in a given trial. In this work, a detailed and comprehensive study of RT processes was conducted at the lab scale; a demonstration of the optimization of polymer assisted dewatering is given and biogas production and quality monitored. Two custom designed digesters (capacity = 1.5 L) were operated in parallel with one acting as a ‘control’ digester and the other operating under a semi-batch RT mode; both digesters were also operated in parallel under RT with alternative polymer flocculants. There were no significant changes in the overall biogas methane composition; however the RT digester had an average biogas productivity over two times higher than the control one. It was found that the recycling of the polymer flocculant back into the RT digester resulted in a significant improvement in dewatering performance. At the highest polymer concentration tested, all polymer flocculants demonstrated equivalent dewatering performance achieving over 6 times lower CST’s than the control; at lower polymer concentrations the 4516 polymer flocculant had superior dewatering performance. Thus, there exists an opportunity to decrease the overall consumption of polymer flocculants through judicious selection of the flocculant and the dose that is used both for the thickening and end-stage dewatering processes in RT digesters. / Thesis / Master of Applied Science (MASc) / In wastewater treatment (WWT), solid wastes are treated using a technique called anaerobic digestion (AD) which involves the conversion of solids in biogas by anaerobic bacteria. Biogas is a mixture of mostly methane and carbon dioxide and can be used as a fuel source for energy production. There’s growing interest in the use of high performance AD processes for the production of biogas at WWT facilities to offset the energy demands associated with WWT. Recuperative thickening (RT) is a promising technique which involves recycling a portion of the digested solids back to the digester. In this work, a detailed and comprehensive study of RT processes was conducted at the lab scale; a demonstration of the optimization of polymer assisted dewatering is given and biogas production and quality monitored. Two 1.5 L custom designed digesters were operated in parallel one as a ‘control’ and the other operating under a semi-batch RT.
40

Wastewater Carbon Diversion and Recovery via Primary Sludge Production, Thermal Hydrolysis, and Anaerobic Digestion

Luo, Hao 13 November 2023 (has links)
This study aims to provide the latest understanding of cutting-edge technologies that enable wastewater organic carbon diversion and recovery through the enhancement of sludge production and blending, digestibility, dewaterability, and dewatered cake odor emission control. A comprehensive literature review showed that iron-based coagulants tend to show less negative impact than aluminum-based coagulants. This can be attributed to the reduction of ferric to ferrous ions in the course of anaerobic digestion (AD), which leads to a suite of changes in protein bioavailability, alkalinity, and hydrogen sulfide levels, and in turn the sludge dewaterability and odor potential. In terms of the roles of thermal hydrolysis pretreatment (THP), the mechanism review indicated that the improvement of sludge dewaterability and anaerobic digestibility as a result of THP was because of the destruction of extracellular polymeric substances and increase of hydrolysis rate. However, THP also brings side effects such as high free residual ammonia and recalcitrant dissolved organic nitrogen (rDON) in the effluent. Besides, a comprehensive understanding of the formation of the odorous compounds in the sludge treatment processes indicated that sulfurous and nitrogenous compounds are usually regarded as the major odor-causing substances. A Pilot THP-AD study indicated that adding aluminum to produce primary sludge can improve overall plant sludge digestibility, dewaterability, and well as the rDON reduction. Moreover, results from a pilot THP-AD and biochemical methane potential (BMP) test study indicated that adding a secondary thermal hydrolysis after a primary thermal hydrolysis-AD system can still create new BMP. Finally, a pilot study was conducted to evaluate the effect of aeration in the sludge holding tank on biosolids odor emission. The two rounds of bench-scale aeration studies indicated that aerating the sludge in holding tanks reduced peak emission concentrations of sulfurous odorous compounds. Further full-scale validation confirmed that aeration can be used by utilities as a simple means for biosolids odor control. / Doctor of Philosophy / Public wastewater treatment annually consumed 3-4% energy production and contributed 1% greenhouse gas emission in the U.S. Meanwhile, the chemical energy contained in wastewater was estimated to be 9.3 times the energy it takes to treat it. Therefore, harvesting wastewater energy is proposed as a viable means for achieving energy and carbon neutral wastewater treatment. The approach to sending wastewater energy as much as possible to anaerobic digesters in which microorganisms help harvest useful energy in the form of flammable methane was evaluated in this study. From literature, we learned that chemicals used for upstream wastewater energy capture and nutrient removal may make the downstream energy recovery difficult. While, thermal hydrolysis pretreatment, an industrial-scale pressure cooker, can be used to improve the ease of microbial bioenergy harvesting by making organics more biodegradable. However, thermal hydrolysis may also bring side effect in terms of recalcitrant organic formation. Also, in the course of energy recovery, the production and emission of nuisance odor may occur but can be controlled. Building on this existing knowledge, this study evaluated the pros and cons of the approach to using chemicals to capture and recover energy from wastewater. The results showed that the extents of energy recovery and savings was greater than the compromised solids reduction from the process. Moreover, results from a biochemical methane potential test study indicated that adding a secondary thermal hydrolysis can recover even more chemical energy from wastewater. In the end, a pilot study was conducted to develop a simple and economical approach to mitigating the odor emission issue during sludge handling. Results showed that pumping air into the sludge holding tank can substantially reduce peak odor emission. This approach was later verified in a full-scale test and recommended to utilities as a simple means for biosolids odor control.

Page generated in 0.3257 seconds