• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Equations de réaction-diffusion et quelques applications à la Biologie

Labadie, Mauricio 08 December 2011 (has links) (PDF)
La motivation de cette thèse de Doctorat est de modéliser quelques problèmes biologiques avec des systèmes et des équations de réaction-diffusion. La thèse est divisée en sept chapitres: 1. On modélise des ions de calcium et des protéines dans une épine dendritique mobile (une microstructure dans les neurones). On propose deux modèles, un avec des protéines qui diffusent et un autre avec des protéines fixées au cytoplasme. On démontre que le premier problème est bien posé, que le deuxième problème est presque bien posé et qu'il y a un lien continu entre les deux modèles. 2. On applique les techniques du Chapitre 1 pour un modèle d'infection virale et réponse immunitaire dans des cellules cultivées. On propose comme avant deux modèles, un avec des cellules qui diffusent et un autre avec des cellules fixées. On démontre que les deux problèmes sont bien posés et qu'il y a un lien continu entre les deux modèles. On Žtudie aussi le comportement asymptotique et la stabilité des solutions pour des temps larges, et on fait des simulations dans Matlab. 3. Dans le Chapitre 3 on montre que la croissance a deux effets positives dans la formation de motifs ou patterns. Le premier est un effet anti-explosion (anti-blow-up) car les solutions sur un domaine croissant explosent plus tard que celles sur un domaine fixé, et si la croissance est suffisamment rapide alors elle peut même empêcher l'explosion. Le deuxième est un effet stabilisant car les valeur propres sur un domaine croissant ont des parties réelles plus petites que celles sur un domaine fixé. 4. On étend la définition de front progressif à des variétés et on en étudie quelques propriétés. 5. On étudie des front progressifs sur la droite réelle. On démontre qu'il y a deux fronts progressifs qui se déplacent dans des directions opposées et qu'ils se bloquent mutuellement, générant ainsi une solution stationnaire non-triviale. Cet exemple montre que pour des modèles à diffusion non-homogène les fronts progressifs ne sont pas nécessairement des invasions. 6. On étudie des fronts progressifs sur la sphère. On démontre que pour des sous-domaines de la sphère avec des conditions aux limites de Dirichlet le front progressif est toujours bloqué, tandis que pour la sphère complète le front peut ou bien invahir ou bien être bloqué, tout en fonction des conditions initiales. 7. On étudie un problème elliptique aux valeurs propres nonlinéaires. Sur la sphère de dimension 1 on démontre l'existence de multiples solutions non-triviales avec des techniques de bifurcation. Sur la sphère de dimension n on utilise les mêmes arguments pour dŽmontrer l'existence de multiples solutions non-triviales à symétrie axiale, i.e. qui ne dépendent que de l'angle vertical.

Page generated in 0.1026 seconds