• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 9
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 61
  • 28
  • 26
  • 22
  • 15
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Transformation mechanisms to TiO and anatase from Ti thin film by anodizing and thermal annealing treatments

Chung, Yu-Lin 25 February 2012 (has links)
The phase transformation of anodized Ti film has been studied. Although X-ray diffraction detected only the amorphous TiO2 phase, transmission electron microscopy analysis showed that TiO nanocrystallites less than 10 nm in size were also present, which was further supported by x-ray photoelectron spectroscopy analysis. Anatase was found to appear gradually by annealing the as-anodized specimen in air at 500¡V550 oC, which was accompanied by a simultaneous disappearance of TiO nanocrystallites. In contrast, only rutile is formed by annealing the Ti film at the same temperatures. The results indicate that TiO can induce the formation of anatase, which is explained by the close similarity between their structures. (Chapter 1) Anatase phase of TiO2 has been shown to have very good biocompability. It was frequently observed on Ti surfaces after anodizing and thermal annealing treatments. In this report the mechanisms of the Ti to TiO and the TiO to anatase phase transitions in anodizing and annealing treatments of Ti have been studied by transmission electron microscopy. Ti thin films of two strong textures were first grown on the (001)NaCl substrates. In addition to amorphous TiO2, the anodization treatment caused the formation of TiO with an orientation relationship of (11-20)Ti // (220)TiO with Ti. The subsequent thermal annealing treatment caused the TiO to anatase transition with an orientation relationship of {200}TiO //{200}A. Pure anatase film was prepared by this method. (Chapter 2)
22

Electronic Properties Of Dye Molecules Adsorbed On Anatase-titania Surface For Solar Cell Applications

Torun, Engin 01 August 2009 (has links) (PDF)
Wide band gap metal oxides have recently become one of the most investigated materials in surface science. Among these metal oxides especially TiO2 attracts great interest, because of its wide range applications, low cost, biocompatibility and ease of analysis by all experimental techniques. The usage of TiO2 as a component in solar cell technology is one of the most investigated applications of TiO2 . The wide band gap of TiO2 renders it inecient for isolated use in solar cells. TiO2 surface are therefore coated with a dye in order to increase eciency. This type of solar cells are called dye sensitized solar cells . The eciency of dye sensitized solar cells is directly related with the absorbed light portion of the entire solar spectrum by the dye molecule. Inspite of the early dyes, recent dye molcules, which are called wider wavelength response dye molecules, can absorb a larger portion of entire solar spectrum. Thus, the eciency of dye sensitized solar cells is increased by a considerably amount. In this thesis the electronic structure of organic rings, which are the fundamental components of the dye molecules, adsorbed on anatase (001) surface is analyzed using density functionaltheory. The main goal is to obtain a trend in the electronic structure of the system as a function of increasing ring number. Electronic structure analysis is conducted through band structure and density of states calculations. Results are presented and discussed in the framework of dye sensitized solar cells theory.
23

The Synthesis Of Titanium Dioxide Photocatalysts By Sol-gel Method: The Effect Of Hydrothermal Treatment Conditions And Use Of Carbon Nanotube Template

Yurum, Alp 01 September 2009 (has links) (PDF)
Titanium dioxide (TiO2), a semiconductor, has been used in many areas like heterogeneous photocatalysis. In the present study, the effect of hydrothermal treatment conditions and the use of carbon nanotubes on the photocatalytic activity of sol-gel synthesized titanium dioxide were examined. The anatase particles were transformed into layered trititanate particles with either nanotube or nanoplate structure by hydrothermal treatment under the alkaline conditions. Post hydrothermal treatment under neutral conditions was also applied and mesoporous particles were transformed into nanostructured, highly crystalline and ordered anatase particles. Photocatalytic activities of hydrothermally treated samples were determined against Escherichia coli under solar irradiation. Results showed that hydrothermal treatment under alkaline conditions improved the photocatalytic activity. However, although being highly crystalline, after post treatment, a limited activity was obtained because of dehydration of active (101) face of anatase. Nevertheless, TiO2&amp / #8217 / s initial inactivation constant rose from 0.6 to 2.9 hr-1 after regeneration of active sites in aqueous medium under solar irradiation. In order to enhance the surface area and improve activity, multi-walled carbon nanotubes were utilized during the synthesis of TiO2. The effect of calcination conditions and presence of sodium, iron and cobalt on the photocatalytic activity were also studied. For these samples, photocatalytic activities were tested with methylene blue solution under UV irradiation. It was observed that the utilization of CNTs enhanced both the surface area and the activity. Compositions with highest CNT content had better activities for their ability to delay charge recombination. While pure TiO2&amp / #8216 / s initial decomposition constant was 0.8 hr-1, with sodium doping the best value of 1.9 hr-1 was achieved.
24

Effect Of Support Material In Nox Storage/reduction Catalysts

Hummatov, Ruslan 01 September 2010 (has links) (PDF)
Energy need in transportation and industry is mainly met by fossil fuels. This causes consumption of resources and some environmental problems. Diesel and gasoline engines are developed to consume fuel efficiently in vehicles. Since these engines work in a low fuel to air ratio, it becomes difficult to reduce nitrogen oxide emission. For this reason NO x storage/reduction (NSR) catalysts have been developed. While engines are operating under lean conditions alkaline or alkaline-earth component of NSR catalysts capture nitrogen oxides and during fuel rich period stored nitrates are reduced to nitrogen and oxygen gases. To develop this technology, different system parameters, for example system components and reaction environments have been widely investigated experimentally. To supplement the experimental findings, binding energies and structural properties of NO x on different catalyst components have been investigated theoretically. It has been experimentally observed that adding TiO2 to other conventional support materials increases resistance against sulfur poisoning, which is one of the main problems concerning NSR catalysts. For this reason, in this thesis (001) and (101) anatase surfaces have been investigated. Moreover, the effects of barium oxide units and layers on the electronic properties of the (001) anatase surface have been studied. To observe the effects of TiO2 as a support component, interactions of NO2 and SO2 on the unsupported and anatase supported (100) BaO surfaces have been compared. A clear increase in sulfur resistance has been observed in the presence of TiO2 in the catalyst under certain conditions.
25

Synthèse et caractérisation des couches minces et de membranes photocatalytiques mésostructurées à base de TiO2 anatase

Bosc, F. 30 September 2004 (has links) (PDF)
Des couches minces et des membranes photoactives à base d'anatase nanocristalline et à mésoporosité ordonnée, obtenues par effet d'empreinte de mésophases structurantes, ont été réalisées en vue du couplage direct séparation membranaire et réaction photocatalysée. Une méthode de synthèse par voie sol-gel de sol d'anatase nanocristalline à basse température a été mise au point. Des couches minces et des membranes mésostructurées ont été préparées à partir de ce sol en utilisant des copolymères triblocs de type poly (oxy éthylène)- bloc – poly (oxy propylène)- bloc – poly (oxy éthylène). Ces molécules amphiphiles forment par auto-assemblage des mésophases structurantes. Deux mésostructures différentes ont été obtenues : une mésostructure initialement hexagonale 2D de type cristallographique p6mm, correspondant à un arrangement compact de micelles cylindriques puis de pores cylindriques, et une mésostructure cubique de type cristallographique Fm3m, présentant des pores sphériques, issue d'une mésophase micellaire cubique. Nous avons montré qu'il est possible de détruire la mésophase structurante à basse température (150°C), en utilisant les propriétés photocatalytiques de l'anatase. Ceci permet d'envisager le dépôt de ces couches minces sur des supports thermosensibles. Nous avons aussi exploré la possibilité de réaliser des couches mixtes ordonnées TiO2/SiO2 et des films dopés pour étendre le domaine de la photoactivité du matériau vers la lumière visible. Ces couches minces et ces membranes ont été testées en photocatalyse. Elles ont montré leur efficacité élevée. Des tests préliminaires de couplage direct séparation/photodégradation ont été réalisés sur une solution aqueuse de bleu de méthylène. Les membranes ont été également caractérisées en perméation des liquides et des gaz.
26

Novel Soft Chemistry Synthesis of TiO2 for Applications in Dye–Sensitized Solar Cells and Photocatalysis

Hegazy, Aiat January 2012 (has links)
Although the high cost of solar cells prevents them being a primary candidate for energy production, great attention has been paid towards them because of the depletion of the conventional energy sources–fossil fuels–and the global warming effect, and the need to provide power to remote communities disconnected from the power grid. To reduce the cost, thin film technologies for silicon solar cells have also been investigated and commercialized, but dye sensitized solar cells (DSSC) have been considered as a promising alternative even for the silicon thin films with efficiency exceeding 10%. Compared with silicon-based photovoltaic devices, DSSCs are quite complex systems that require an intimate interaction among components. Within the last few years, conclusive smart solutions have been provided to improve the efficiency of these cells, with solar efficiency that makes them potential competitors against silicon devices. The most successful systems use titanium oxide as a core material tuned to collect and transmit the electrons generated by the photo-excitation of dye molecules. However, most of the solutions demonstrated so far require a thermal treatment of the TiO2 photoelectrodes at temperatures that preclude using any flexible organic substrate. This treatment prevents development of any roll-to-roll manufacturing process, which would be the only way to achieve cost effective large scale production. In order to overcome this major drawback, a novel synthesis of TiO2 at room temperature is described in the present document. This synthesis leads to 4-6 nm nanocrystalline anatase, the desired phase of titanium oxide for photoactive applications. An intensive study was carried out to explore the properties of these nanoparticles, via a mixture design study designed to analyze the influence of the starting composition on the final TiO2 structure. The influence of a post-synthesis thermal treatment was also explored. This 4 nm nanocrystalline TiO2 exhibits a high specific surface area and a good porosity that fulfills the requirements for an efficient photoanode; a high surface area allows high dye loading, and, hence, increases photocurrent and photo-conversion efficiency. Another important result of this study is the band gap, as it confirmed that nanocrystalline anatase has an indirect band gap and a quantum confinement for a crystal size of less than 10 nm. This result, well-known for bulk materials, had been discussed in some previous publications that claimed the effectiveness of a direct band gap. Following this synthesis and the structural and spectroscopic analyzes carried out in parallel, photocatalytic study was an important tool to further explore the semiconducting properties of this material. Additionally, our material gave very promising results in photocatalytic dye degradation, compared to the commercial products, even if it was not initially synthesized for this application. We assign these performances to the improved crystallinity resulting from thermal activation, without changing the crystal size, and to the ability to optimize the surface. This photocatalytic study gave us insights into the methods that optimize the electronic structure of the titanium oxide. Hence, we decided to thermally activate the nanoparticles before the preparation of films to be inserted into DSSCs. At this stage, as the thermal activation applies to the powder, the resulting material can still be used with flexible substrates. We have successfully integrated these nanoparticles in dye sensitized solar cells. Various organic additives were added to the TiO2 paste used to prepare photoelectrode films, to increase the porosity of the film and have a crack–free film with good attachment to the substrate. We demonstrated that the dye was chemically attached to the TiO2 surface, which led to better electron transport. Different treatment methods (UV and thermal) were applied to the film to cure it from organic additives and improve the electronic connectivity between the particles. When the UV treatment was applied as a single method, i.e. without thermal treatment, the cell performance was lower, but a combination of thermal treatment and UV enhanced this performance. We compared our nanoparticles to the reference material used in most of the studies on DSSC, that is, TiO2 Degussa, with cells prepared the same way. Our nanoparticles revealed higher overall conversion efficiency. As the dye attachment to the TiO2 surface is an important parameter that enhances the cell efficiency, so we checked via ATR-FTIR how the dye attached to the TiO2 surface. In addition, FTIR, UV-Vis, and IV measurements revealed that the amount of dye adsorbed was increased through HCl treatment of the photoelectrode. We also checked the internal resistance of the cell using impedance spectroscopy, and the analysis proved a successful integration of the nanoparticles in dye–sensitized solar cells as there was an increase in both the electron life time and the recombination resistance, and a decrease in the charge transfer resistance compared to the commercial powder.
27

Cooling characteristics of high titania slags

Bessinger, Deon 21 July 2006 (has links)
Please read the abstract in the section 00front of this document Copyright 2000, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Bessinger, D 2000, Cooling characteristics of high titania slags, MSc dissertation, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-07212006-102324 / > H 95 / Dissertation (MSc (Metallurgy))--University of Pretoria, 2007. / Materials Science and Metallurgical Engineering / unrestricted
28

The composition of photocatalytic nanofibres through electrospinning

Farao, Al Cerillio January 2014 (has links)
>Magister Scientiae - MSc / The aim of this study was to enrich electrospun fibres with the active mineral phase TiO2 nanoparticles and then to evaluate how well the composite fibres performed in the photocatalytic degradation of methylene blue (MB). Electrospun hydrophobic PAN polymer fibres were used as support structures for the TiO2 nanoparticles. The photocatalytic activity of the TiO2 enriched fibres for dye degradation was evaluated and the effect of external stressors on the fibres was assessed. A comparison was also made to determine whether the TiO2 - photocatalyst catalyst should be coated on top of, or loaded inside the electrospun PAN fibres
29

Separace polutantů na fotoreaktorech / Separation of pollutants on photoreactors

Kurťák, Marek January 2019 (has links)
The diploma thesis deals with photocatalytic degradation of organic polutants on water- suspended UV activated anatase particles. The measurements are executed on a pilot plant UV photoreactor and the aim the thesis is to figure out the time course of azo dyes degradation under different photoreactor settings and subsequently infer the effectivity of the photoreactor under different settings. The degree of the aze dyes degradation is evaluated via UV-VIS spectrometry.
30

Density functional tightbinding studies of Tio2 polymorphs

Gandamipfa, Mulatedzi January 2020 (has links)
Thesis (Ph. D. (Physics)) -- University of Limpopo, 2020 / Titanium dioxide is among the most abundant materials and it has many of interesting physical and chemical properties (i.e., low density, high thermal and mechanical strength, insensitivity to corrosion) that make it a compound of choice for electrodes materials in energy storage. There are, however, limitations on the theoretical side to using the main electronic structure theories such as Hartree-Fock (HF) or density functional (DFT) especially for large periodic and molecular systems. The aim of the theses is to develop a new, widely transferable, self-consistent density functional tight binding SCC-DFTB data base of TiO2, which could be applied in energy storage anodes with a large number of atoms. The TiO2, LiTiO2 and NaTiO2 potentials were derived following the SCC-DFTB parameterization procedure; where the generalized gradient approximation (GGA) and local density approximation (LDA) exchange-correlation functional were employed yielding Slater-Koster DFTB parameters. The results of derived parameters were validated by being compared with those of the bulk rutile and brookite polymorphs. The structural lattice parameters and electronic properties, such as the bandgaps were well reproduced. Most mechanical properties were close to those in literature, except mainly for C33 which tended to be underestimated due to the choice of exchange-correlation functional. The variation of the bulk lattice parameter and volume with lithiation and sodiation were predicted and compared reasonably with those in literature. The newly derived DFTB parameters were further used to calculate bulk properties of the anatase, which is chemically more stable than other polymorphs. Generally, the accuracy of the lattice structural, electronic and mechanical properties of the bulk anantase were consistent with those of the rutile and brookite polymorphs. Furthermore, nanostructures consisting of a large number of atoms, which extend beyond the normal scope of the conventional DFT calculations, were modelled both structurally and electronically. Structural variations with lithiation was consistent with experimental and sodiation tends to enhance volume expansion than lithiation. Anatase TiO2 and LiTO2 nanotubes of various diameters were generated using NanoWrap builder within MedeA® software. Its outstanding resistance to expansion during lithium insertion and larger surface area make the TiO2 nanotube a promising candidate for rechargeable lithium ion batteries. The outcomes of this study will be beneficial to future development of TiO2 nanotube and other nanostructures. Lastly, our DFTB Slater-Koster potentials were applied to recently discovered trigonal bipyramid (TB), i.e. TiO2 (TB)-I and TiO2 (TB)-II polymorphs, which have enormous 1- D channels that provide suitable pathways for mobile ion transport. All structural, electronic properties were consistent with those in literature and all elastic properties agreed excellently with those that were calculated using DFT methods. Finally, the bulk structures of the two polymorphs, were lithiated and sodiated versions and electronic and structural properties were studied, together with the lithiated versions of associated nanostructures consisting of a large number of atoms. Generally, the TiO2 (TB)-I structure was found to be mechanically, energetically more stable and ductile than TiO2 (TB)-II. Hence, it will be beneficial to use TiO2 (TB)-I as an anode material for sodium ion batteries (SIB), due to its unique ductility and larger 1D channels. / National Research Fund (NRF), the Department of Science and Innovation (DSI) Energy Storage Research Development and Innovation initiative and Materials Modeling Centre

Page generated in 0.0315 seconds