• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 29
  • 11
  • 7
  • 7
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 119
  • 65
  • 35
  • 34
  • 22
  • 19
  • 19
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Control and stability enhancement of grid-interactive voltage source inverters under grid abnormalities

Adib, Aswad January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Behrooz Mirafzal / Voltage source inverters (VSIs) are an essential interface for grid integration of renewable energy resources. Grid-tied VSIs are employed in power grids to integrate distributed generation units, e.g. photovoltaic arrays, wind turbines and energy storage units, to the utility and extract the maximum energy from the DG units in an efficient manner. However, the stability of VSIs and by extension the entire DG system can be degraded under abnormal grid conditions. In this dissertation, new control and switching techniques for stability and power quality improvement of grid-tied VSIs under abnormal grid conditions are presented. For grids with a low inertia and a low short-circuit ratio, commonly referred to as weak grids, grid connection may make VSIs susceptible to voltage distortion and instability. In this dissertation, through root locus analysis of a detailed state-space model, the design of several circuit and control parameters of the grid-tied VSI are evaluated for improving stability in weak grids. It is shown that grid-side filter inductances can be increased for stable operation of VSIs in weak grids. Accordingly, a virtual inductance emulating the effect of an increased inductance in the grid-side filter is developed in this dissertation, which enables stable operation of VSIs in weak grids without the tradeoffs, i.e. additional voltage drop, increased cost and larger size, associated with a larger inductor. The virtual inductance scheme is realized through the injection of a feedforward current element in the VSI controller through a gain component. The measured grid currents, which are sensed for regular VSI controller operation, are employed as the feedforward component eliminating the need for any additional sensors for the utilization of this control scheme. Furthermore, a direct model reference adaptive control (MRAC) scheme is employed in this dissertation to tune the virtual inductance gain block according to a stable reference model for varying grid conditions. The use of direct MRAC scheme allows tuning of the virtual inductance block without the need for a plant parameter estimation stage. The virtual inductance scheme enables stable operation of VSIs in weak grids without system parameter redesign, thereby maintaining the steady-state performance of the system. The efficacy of the virtual inductance feedforward scheme is verified through hardware tests carried out on a three-phase grid-tied experimental setup. Along with extracting energy from the DG sources, grid-tied VSIs are capable of providing various ancillary services to the utility under abnormal conditions. However, providing ancillary services could drive the inverter voltages beyond the linear modulation region resulting in grid current distortions, which could violate the requirements for grid integration of DGs. An atypical pulse width modulation (PWM) technique is proposed in this dissertation, which maximizes the dc-bus utilization of VSIs, which in turn enables the VSIs to supply the maximum extracted power from the DG units to the grid when providing ancillary services while operating in the linear modulation region. The switching scheme is realized by injecting common mode components in the PWM references, computed based on instantaneous reference magnitudes. The proposed scheme is suitable when providing both symmetrical and asymmetrical ancillary services. In this dissertation, negative-sequence compensation and harmonic compensation are employed as instances of symmetrical and asymmetrical ancillary services. The proposed scheme can be integrated with any control scheme and carrier-based PWM combinations. The efficacy of the proposed atypical PWM scheme is verified through both simulation and hardware tests.
22

Transient stability-constrained load dispatch, ancillary services allocation and transient stability assessment procedures for secure power system operation

Karimishad, Amir January 2008 (has links)
[Truncated abstract] The present thesis is devoted to the development of new methods for transient stability-constrained optimal power flow, probabilistic transient stability assessment and security-constrained ancillary services allocation. The key objective of the thesis is to develop novel dispatch and assessment methods for power systems operation in the new environment of electricity markets to ensure power systems security, particularly transient stability. A new method for economic dispatch together with nodal price calculations which includes transient stability constraints and, at the same time, optimises the reference inputs to the Flexible AC Transmission System (FACTS) devices for maintaining power systems transient stability and reducing nodal prices is developed. The method draws on the sensitivity analysis of time-domain transient stability simulation results to derive a set of linearised stability constraints expressed in terms of generator active powers and FACTS devices input references. '...' The low computing time requirement of the two-point estimate method allows online applications, and the use of detailed power systems dynamic model for time-domain simulation which offers high accuracy. The two-point estimate method is integrated in a straightforward manner with the existing transient stability analysis tools. The integrated software facility has potential applications in control rooms to assist the system operator in decision making process based on instability risks. The software system when implemented on a cluster of processors also makes it feasible to re-assess online transient stability for any change in system configuration arising from switching control. The method proposed has been tested on a representative power system and validated using the Monte Carlo simulation. In conjunction with the energy market, by which forecasted load demand is met by generator dispatch, ancillary services are required in relation to control for secure system operation and power quality. The final part of the thesis has a focus on the key aspect of allocating these ancillary services, subject to an important constraint that the dispatch of the ancillary services will not impair the system security achieved in the load dispatch. With this focus and requirement, the thesis develops a new dispatch formulation in which the network security constraints are represented in the optimal determination of generator active power schedule and allocation of ancillary services. Contingencies considered include power demand variations at individual load nodes from the values specified for the current dispatch calculation. The required changes in generator active powers to meet the new load demands are represented by additional control variables in the new dispatch formulation which augment those variables in the traditional OPF dispatch calculation. Based on the Lagrange function which includes the extended set of security constraints, the formulation derives the optimality condition to be satisfied by the dispatch solution, together with the marginal prices for individual ancillary service providers and LMPs. The effects of the security constraints are investigated and discussed. Case studies for representative power systems are presented to verify the new dispatch calculation procedure.
23

Adaptive Voltage Control Methods using Distributed Energy Resources

Li, Huijuan 01 December 2010 (has links)
Distributed energy resources (DE) with power electronics interfaces and logic control using local measurements are capable of providing reactive power related to ancillary system services. In particular, local voltage regulation has drawn much attention in regards to power system reliability and voltage stability, especially from past major cascading outages. This dissertation addresses the challenges of controlling the DEs to regulate the local voltage in distribution systems. First, an adaptive voltage control method has been proposed to dynamically modify the control parameters of a single DE to respond to system changes such that the ideal response can be achieved. Theoretical analysis shows that a corresponding formulation of the dynamic control parameters exists; hence, the adaptive control method is theoretically solid. Also, the field experiment test results at the Distributed Energy Communications and Controls (DECC) Laboratory in single DE regulation case confirm the effectiveness of this method. Then, control methods have been discussed in the case of multiple DEs regulating voltages considering the availability of communications among all the DEs. When communications are readily available, a method is proposed to directly calculate the needed adaptive change of the DE control parameters in order to achieve the ideal response. When there is no communication available, an approach to adaptively and incrementally adjust the control parameters based on the local voltage changes is proposed. Since the impact from other DEs is implicitly considered in this approach, multiple DEs can collectively regulate voltages closely following the ideal response curve. Simulation results show that each method, with or without communications, can satisfy the fast response requirement for operational use without causing oscillation, inefficiency or system equipment interference, although the case with communication can perform even faster and more accurate. Since the proposed adaptive voltage regulation method in the case of multiple DEs without communication, has a high tolerance to real-time data shortage and can still provide good enough performance, it is more suitable for broad utility applications. The approach of multiple DEs with communication can be considered as a high-end solution, which gives faster and more precise results at a higher cost
24

Assessment of spinning reserve requirements in a deregulated system

Odinakaeze, Ifedi Kenneth 22 March 2010
A spinning reserve assessment technique for a deregulated system has been developed and presented in this thesis. The technique is based on direct search optimization approach. Computer programs have been developed to implement the optimization processes both for transmission loss and without transmission loss.<p> A system commits adequate generation to satisfy its load and export/import commitment. Additional generation known as spinning reserve is also required to satisfy unforeseen load changes or withstand sudden generation loss. In a vertically integrated system, a single entity generates, transmits and distributes electrical energy. As a part of its operational planning, the single entity decides the level of spinning reserve. The cost associated with generation, transmission, distribution including the spinning reserve is then passed on to the customers.<p> In a deregulated system, generation, transmission and distribution are three businesses. Generators compete with each other to sell their energy to the Independent System Operators (ISO). ISO coordinates the bids from the generation as well as the bids from the bulk customers. In order to ensure a reliable operation, ISO must also ensure that the system has adequate spinning reserve. ISO must buy spinning reserve from the spinning reserve market. A probabilistic method called the load forecast uncertainty (LFU)-based spinning reserve assessment (LSRA) is proposed to assess the spinning reserve requirements in a deregulated power system.<p> The LSRA is an energy cost- based approach that incorporates the load forecast uncertainty of the day-ahead market (DAM) and the energy prices within the system in the assessment process. The LSRA technique analyzes every load step of the 49-step LFU model and the probability that the hourly DAM load will be within that load step on the actual day. Economic and reliability decisions are made based on the analysis to determine and minimize the total energy cost for each hour subject to certain system constraints in order to assess the spinning reserve requirements. The direct search optimization approach is easily implemented in the determination of the optimal SR requirements since the objective function is a combination of linear and non-linear functions. This approach involves varying the amount of SR within the system from zero to the maximum available capacity. By varying the amount of SR within the system, the optimal SR for which the hourly total operating cost is minimum and all operating constraints are satisfied is evaluated.<p> One major advantage of the LSRA technique is the inclusion of all the major system variables like DAM hourly loads and energy prices and the utilization of the stochastic nature of the system components in its computation. The setback in this technique is the need to have access to historical load data and spot market energy prices during all seasons. The availability and reliability of these historical data has a huge effect on the LSRA technique to adequately assess the spinning reserve requirements in a deregulated system.<p> The technique, along with the effects of load forecast uncertainty, energy prices of spinning reserve and spot market and the reloading up and down limits of the generating zones on the spinning reserve requirements are illustrated in detail in this thesis work. The effects of the above stochastic components of the power system on the spinning reserve requirements are illustrated numerically by different graphs using a computer simulation of the technique incorporating test systems with and without transmission loss.
25

Assessment of spinning reserve requirements in a deregulated system

Odinakaeze, Ifedi Kenneth 22 March 2010 (has links)
A spinning reserve assessment technique for a deregulated system has been developed and presented in this thesis. The technique is based on direct search optimization approach. Computer programs have been developed to implement the optimization processes both for transmission loss and without transmission loss.<p> A system commits adequate generation to satisfy its load and export/import commitment. Additional generation known as spinning reserve is also required to satisfy unforeseen load changes or withstand sudden generation loss. In a vertically integrated system, a single entity generates, transmits and distributes electrical energy. As a part of its operational planning, the single entity decides the level of spinning reserve. The cost associated with generation, transmission, distribution including the spinning reserve is then passed on to the customers.<p> In a deregulated system, generation, transmission and distribution are three businesses. Generators compete with each other to sell their energy to the Independent System Operators (ISO). ISO coordinates the bids from the generation as well as the bids from the bulk customers. In order to ensure a reliable operation, ISO must also ensure that the system has adequate spinning reserve. ISO must buy spinning reserve from the spinning reserve market. A probabilistic method called the load forecast uncertainty (LFU)-based spinning reserve assessment (LSRA) is proposed to assess the spinning reserve requirements in a deregulated power system.<p> The LSRA is an energy cost- based approach that incorporates the load forecast uncertainty of the day-ahead market (DAM) and the energy prices within the system in the assessment process. The LSRA technique analyzes every load step of the 49-step LFU model and the probability that the hourly DAM load will be within that load step on the actual day. Economic and reliability decisions are made based on the analysis to determine and minimize the total energy cost for each hour subject to certain system constraints in order to assess the spinning reserve requirements. The direct search optimization approach is easily implemented in the determination of the optimal SR requirements since the objective function is a combination of linear and non-linear functions. This approach involves varying the amount of SR within the system from zero to the maximum available capacity. By varying the amount of SR within the system, the optimal SR for which the hourly total operating cost is minimum and all operating constraints are satisfied is evaluated.<p> One major advantage of the LSRA technique is the inclusion of all the major system variables like DAM hourly loads and energy prices and the utilization of the stochastic nature of the system components in its computation. The setback in this technique is the need to have access to historical load data and spot market energy prices during all seasons. The availability and reliability of these historical data has a huge effect on the LSRA technique to adequately assess the spinning reserve requirements in a deregulated system.<p> The technique, along with the effects of load forecast uncertainty, energy prices of spinning reserve and spot market and the reloading up and down limits of the generating zones on the spinning reserve requirements are illustrated in detail in this thesis work. The effects of the above stochastic components of the power system on the spinning reserve requirements are illustrated numerically by different graphs using a computer simulation of the technique incorporating test systems with and without transmission loss.
26

Geological Mapping Using Remote Sensing Technologies

Akkok, Inci 01 May 2009 (has links) (PDF)
In an area of interest- Sivas Basin, Turkey- where most of the units are sedimentary and show similar spectral characteristics, spectral settings of ASTER sensor may not be enough by itself. Therefore, considering other aspects, such as morphological variables, is reasonable in addition to spectral classifiers. The main objective of this study is to test usefulness of integration of spectral analysis and morphological information for geological mapping. Remotely sensed imagery obtained from ASTER sensor is used to classify different lithological units while DEM is used to characterize landforms related to these lithological units. Maximum Likelihood Classification (MLC) is used to integrate data streaming from different sources. The methodology involves integrating the surface properties of the classified geological units in addition to the spectral reflectances. Seven different classification trials were conducted: : 1. MLC using only nine ASTER bands, 2. MLC using ASTER bands and DEM, 3. MLC using ASTER bands and slope, 4. MLC using ASTER bands and plan curvature, 5. MLC using ASTER bands and profile curvature, 6. MLC using ASTER bands and drainage density and finally 7. MLC using ASTER bands and all ancillary data. The results revealed that integrating topographical parameters aid in improvement of classification where spectral information is not sufficient to discriminate between classes of interest. An increase of more than 5% is observed in overall accuracy for the all ancillary data integration case. Moreover more than 10% improvement for most of the classes was identified. However from the results it is evident that the areal extent of the classified units causes constraints on application of the methodology.
27

Toward a risk framework in prioritizing ancillary transportation assets for management.

Boadi, Richard S. 18 November 2011 (has links)
A growing number of transportation agencies have begun to manage selected ancillary transportation assets systematically--culverts, guardrails, pavement markings, sidewalks and curbs, street lighting, traffic signals, traffic signs, utilities and manholes, earth retaining structures, and environmental mitigation features. Given prevailing budget limitations, several agencies are interested in prioritizing these assets for inclusion in their existing management systems. This paper discusses critical elements of a framework for assessing the risks, benefits and costs of incorporating ancillary assets in existing Transportation Asset Management programs. The paper reviews some basic elements of a risk theory, examines risk applications in transportation asset management, water mains, and storm water management, and identifies the basic elements of a risk-benefit-cost framework for prioritizing ancillary assets for management. These elements can be used as a basis for developing a decision analysis framework to make a business case for the formal management of ancillary transportation assets and to prioritize them for inclusion in existing Transportation Asset Management programs. Using these elements, we have developed a risk ranking model that can be used by transportation officials to prioritize their ancillary asset classes for management. A demonstration of the model is presented in this paper to show its effectiveness. The study concludes that tracking and documentation of ancillary transportation asset failures would help agencies better understand the risks associated with failure. Tracking and documenting the failures of ancillary transportation assets would also help in identifying trends/probability of failure as well as quantifying the consequences associated with these failures. Such information could also be used to estimate risk factors to prioritize individual asset classes for inclusion in existing management systems.
28

Addressing Future Grid Requirements for Distributed Energy Resources

Kish, Gregory 12 December 2011 (has links)
This thesis first develops a medium-voltage grid code outlining stringent requirements for low-voltage ride-through, high-voltage ride-through and ancillary services based on anticipated grid requirements for distributed energy resources (DER)s. A 100 kW generating capacity DER study system is then formulated taking into consideration key design constraints as motivated by the medium-voltage grid code. Local DER system controls are developed that enable existing systems employing conventional current-control for the grid-interfacing voltage-sourced-converters to comply with the grid code. A supervisory controller is proposed that allows multiple DER units and loads to operate collectively as a DER system with a single point of common coupling. The impact of transformer configurations, fault types and fault locations on DER systems are quantified through a comprehensive fault study using the PSCAD/EMTDC software package. A subset of these fault scenarios are identified for rapid screening of DER system compliance against low-voltage ride-through requirements.
29

Addressing Future Grid Requirements for Distributed Energy Resources

Kish, Gregory 12 December 2011 (has links)
This thesis first develops a medium-voltage grid code outlining stringent requirements for low-voltage ride-through, high-voltage ride-through and ancillary services based on anticipated grid requirements for distributed energy resources (DER)s. A 100 kW generating capacity DER study system is then formulated taking into consideration key design constraints as motivated by the medium-voltage grid code. Local DER system controls are developed that enable existing systems employing conventional current-control for the grid-interfacing voltage-sourced-converters to comply with the grid code. A supervisory controller is proposed that allows multiple DER units and loads to operate collectively as a DER system with a single point of common coupling. The impact of transformer configurations, fault types and fault locations on DER systems are quantified through a comprehensive fault study using the PSCAD/EMTDC software package. A subset of these fault scenarios are identified for rapid screening of DER system compliance against low-voltage ride-through requirements.
30

Increasing The Accuracy Of Vegetation Classification Using Geology And Dem

Domac, Aysegul 01 December 2004 (has links) (PDF)
The difficulty of gathering information on field and coarse resolution of Landsat images forced to use ancillary data in vegetation mapping. The aim of this study is to increase the accuracy of species level vegetation classification incorporating environmental variables in the Amanos region. In the first part of the study, coarse vegetation classification is attained by using maximum likelihood method with the help of forest management maps. Canonical Correspondence analysis is used to explore the relationships among the environmental variables and vegetation classes. Discriminant Analysis is used in the second part of the study in two different stages. Firstly Fisher&rsquo / s linear equations for each of the previously defined nine groups calculated and the pixels are included in one of these groups by looking at the probability of that pixel being in that group. In the second stage Distance raster value of maximum likelihood classification is used. Distance raster pixels having a value less than one is accepted as misclassified and replaced with a value of first stage result of that pixel. As a result of this study 19.6 % increase in the overall accuracy is obtained by using the relationships between environmental variables and vegetation distribution.

Page generated in 0.0466 seconds