Spelling suggestions: "subject:"anda uptake"" "subject:"anda yptake""
131 |
Frivilligt repetitivt muskelarbete under sex veckor förändrar kalciumkinetiken i sarkoplasmatiska retiklet hos råttorNordlund, Adam, Torshage, Wilhelm January 2016 (has links)
PURPOSE: Muscle overuse is characterized by inflammation, reduced strength and muscle damage. It has been proposed that calcium (Ca2+) accumulation during muscle contraction, is responsible for muscle damage. Muscle contractile properties are regulated by calcium regulatory excitation contraction coupling mechanisms. Therefore, the main aim of the present study was to investigate the effects of voluntary repetitive tasks during six weeks on the rate of sarcoplasmic reticulum (SR) Ca2+-uptake, and Ca2+-release, in young female Sprague-Dawley rats. Secondly, this study aims to evaluate the effect of the training on muscular strength and the relationship between SR Ca2+-kinetics and grip strength test performance. METHODS: Six rats were trained (EXP), using a well-established model of reaching and handle pulling with the upper extremities (2 hr/day, 3days/week, 6 weeks), six control rats (KON) were included that were not exposed to the task. Grip strength were evaluated using a grip strength meter for rodents, two weeks prior the training was initiated, and two days after the training period was concluded. Tissue samples were obtained from the supraspinatus and trapezius muscle, and the rate of SR Ca2+-uptake and SR Ca2+-release were analysed using the fluorescent Ca2+ indicator indo 1. RESULTS: The analysis revealed that EXP had a significant higher rate of SR Ca2+-uptake, in both supraspinatus (33%, P < 0,05) and trapezius (14%, P < 0,05), compared to KON. However, no significant differences in SR Ca2+-release rate were found between groups, in neither of the muscles. A decline in grip strength were found in both EXP and KON, with no significant differences between groups. No significant correlation between grip strength and the Ca2+ release uptake variables could be found. CONCLUSION: The present results suggests that repetitive voluntary reaching and handle pulling with the upper extremities during six weeks, induce extant changes in SR Ca2+-uptake rate in rats.
|
132 |
The prediction of maximal oxygen uptake from a perceptually-regulated exercise test (PRET)Morris, Mike January 2012 (has links)
The Borg 6–20 rating of perceived exertion (RPE) scale is a common measure reported during exercise testing and training, and is usually taken as a response measurement to provide a subjective assessment of exercise intensity. A lesser used application of the scale is for regulating exercise intensity, referred to as its ‘production mode’. Recent research on this topic initiated by Eston et al. (2005) has led to a novel application of this procedure as a means of predicting an individual’s maximal oxygen uptake ( O2max) via a perceptually-regulated exercise test (PRET). The PRET could play a significant role in guiding exercise prescription and monitoring cardiorespiratory fitness levels in situations where the normal heart rate response is affected. The aim of this thesis is to develop further and test the integrity of the PRET technique. Firstly, a review of the evidence on the validity and reliability of the Borg RPE scale when used to regulate exercise intensity in healthy and unhealthy adults is presented, as to-date, no scholarly publication has synthesised the body of knowledge on this specific application of the scale. Subsequently, four studies were completed to investigate the effects of different methodological variations on the predictive capabilities of the PRET, including an examination (for the first time) of its utility among heart failure patients (Study 4). Study 1 re-visited the validity and reliability of the PRET technique utilising a modified protocol of differing durations (2 and 4 min bouts), with revised instructions and placing the graded exercise test (GXT) as the final trial during cycle ergometry. Superior results were observed to those reported in previous investigations (Eston et al., 2008; Faulkner et al. 2007; Eston et al., 2006) during the 3 min trial, further reinforcing the validity and reliability of this technique. Accordingly, Study 2 was the first to investigate the reliability and validity of a treadmill PRET protocol with a ceiling intensity of RPE 15, rather than RPE 17, and observed that a safer modified PRET (with practice) provides acceptably valid and reliable predictions of O2max in healthy adults. In addition, Study 3 extended the research thus far by investigating the PRET protocol during cycle exercise, once again with a ceiling intensity of RPE 15, and demonstrated that (with practice) a cycle-based PRET can yield reliable and valid predictions of O2max that compare favourably to previous investigations. Finally, given that the research employing a PRET has unanimously alluded to its likely value in clinical populations among whom heart rate as a physiological response to exercise is affected (e.g. via medication) and precluded as a means predicting O2max, Study 4 investigated the utility of a PRET in a beta-blocked population of heart failure patients. In the event, it was observed that a PRET (up to RPE 15) was too strenuous and needs to be capped at an intensity of RPE 13 in this population. In addition a continuous protocol seemed unsuitable due to its length and it was recommended that a discontinuous PRET protocol be investigated. Future research needs to investigate the utilisation of the PRET (i) in different exercise modes; (ii) determine the optimum number of practice trials required; (iii) whether a discontinuous or continuous protocol is more appropariate; (iv) whether the extrapolation should be made to RPE 19 or 20 and; (v) whether the PRET can be employed succesfully in other clinical populations.
|
133 |
Migration and plant uptake of radionuclides in laboratory soil columns and field lysimeter with contaminated water tablesHu, Qing January 1998 (has links)
No description available.
|
134 |
Crystallization of metamorphic garnet : nucleation mechanisms and yttrium and rare-earth-element uptakeMoore, Stephanie Jean 03 July 2014 (has links)
This dissertation focuses on two areas of garnet porphyroblast crystallization that have until now remained largely uninvestigated: epitaxial nucleation of garnet porphyroblasts and yttrium and rare earth (Y+REE) uptake in metamorphic garnet. The mechanism of epitaxial nucleation is explored as a step towards determining which aspects of interfaces are significant to interfacial energies and nucleation rates. Garnet from the aureole of the Vedrette di Ries tonalite, Eastern Alps, shows a clear case of epitaxial nucleation in which garnet nucleated on biotite with (110)grt || (001)bt with [100]grt || [100]bt. The occurrence is remarkable for the clear genetic relationships revealed by the microstructures and for its preservation of the mica substrate, which allows unambiguous determination of the coincident lattice planes and directions involved in the epitaxy. Not all epitaxial nucleation is conspicuous; to increase the ability to document epitaxial relationships between garnet and micas, I develop and apply a method for determining whether evidence for epitaxial nucleation of garnet is present in porphyroblasts containing an included fabric. Although the magnitude of uncertainties in orientation measurements for garnets from Passo del Sole (Switzerland), the Nevado Filabride Complex (Spain), and Harpswell Neck (USA) preclude definitive identification of epitaxial relationships, the method has potential to become a viable technique for creating an inventory of instances and orientations of epitaxial nucleation with appropriate sample selection. Using lattice-dynamics simulations, I explore the most commonly documented epitaxial relationship, (110)grt || (001)ms. The range of interfacial energies resulting from variations in the intracrystalline layer within garnet at the interface, the initial atomic arrangement at the interface, and the rotational orientation of the garnet structure relative to the muscovite structure shows that the intracrystalline layer within garnet has the greatest effect on interfacial energy. A complete understanding of the role of intergranular diffusion for yttrium and rare-earth-element uptake in porphyroblastic garnet is critical because the complexities of Y+REE zoning in garnets and the mechanisms of Y+REE uptake have implications for petrologic interpretations and garnet-based geochronology. Y+REE distributions in garnets from the Picuris Mountains (USA), Passo del Sole (USA), and the Franciscan Complex (USA) imply diverse origins linked to differing degrees of mobility of these elements through the intergranular medium during garnet growth.
|
135 |
Crystallization of metamorphic garnet : nucleation mechanisms and yttrium and rare-earth-element uptakeMoore, Stephanie Jean 04 July 2014 (has links)
This dissertation focuses on two areas of garnet porphyroblast crystallization that have until now remained largely uninvestigated: epitaxial nucleation of garnet porphyroblasts and yttrium and rare earth (Y+REE) uptake in metamorphic garnet. The mechanism of epitaxial nucleation is explored as a step towards determining which aspects of interfaces are significant to interfacial energies and nucleation rates. Garnet from the aureole of the Vedrette di Ries tonalite, Eastern Alps, shows a clear case of epitaxial nucleation in which garnet nucleated on biotite with (110)grt || (001)bt with [100]grt || [100]bt. The occurrence is remarkable for the clear genetic relationships revealed by the microstructures and for its preservation of the mica substrate, which allows unambiguous determination of the coincident lattice planes and directions involved in the epitaxy. Not all epitaxial nucleation is conspicuous; to increase the ability to document epitaxial relationships between garnet and micas, I develop and apply a method for determining whether evidence for epitaxial nucleation of garnet is present in porphyroblasts containing an included fabric. Although the magnitude of uncertainties in orientation measurements for garnets from Passo del Sole (Switzerland), the Nevado Filabride Complex (Spain), and Harpswell Neck (USA) preclude definitive identification of epitaxial relationships, the method has potential to become a viable technique for creating an inventory of instances and orientations of epitaxial nucleation with appropriate sample selection. Using lattice-dynamics simulations, I explore the most commonly documented epitaxial relationship, (110)grt || (001)ms. The range of interfacial energies resulting from variations in the intracrystalline layer within garnet at the interface, the initial atomic arrangement at the interface, and the rotational orientation of the garnet structure relative to the muscovite structure shows that the intracrystalline layer within garnet has the greatest effect on interfacial energy. A complete understanding of the role of intergranular diffusion for yttrium and rare-earth-element uptake in porphyroblastic garnet is critical because the complexities of Y+REE zoning in garnets and the mechanisms of Y+REE uptake have implications for petrologic interpretations and garnet-based geochronology. Y+REE distributions in garnets from the Picuris Mountains (USA), Passo del Sole (USA), and the Franciscan Complex (USA) imply diverse origins linked to differing degrees of mobility of these elements through the intergranular medium during garnet growth.
|
136 |
Alternating single-leg knee extension exercise training : impact on aerobic and functional capacities / Alternating single leg knee extension exercise trainingWolff, Christopher Andrew 20 July 2013 (has links)
Access to abstract permanently restricted to Ball State community only. / Access to thesis permanently restricted to Ball State community only. / School of Physical Education, Sport, and Exercise Science
|
137 |
Accumulation of platinum group elements by the marine microalga, Chlorella stigmatophoraShams, Leyla January 2010 (has links)
Very little information exists on the marine biogeochemistry of Rh, Pd and Pt, or the platinum group elements (PGE), an emerging group of contaminants whose principal emissions are associated with the abrasion of the catalytic converter in motor vehicles and chemotherapy drugs discharged in hospital wastes. In this study, Rh(III), Pd(II) and Pt(IV) were added individually and in combination to cultures of the marine microalga, Chlorella stigmatophora, maintained in coastal seawater at 15oC and under fluorescence lighting both in the presence and absence of trace nutrients (e.g. Fe, Co, Zn and EDTA). The accumulation of PGE was established under varying conditions (pH, algal biomass, PGE concentration, time) by ICP-MS analysis of seawater and nitric acid digests and EDTA washes of the alga, the latter giving a measure of PGE adsorption by C. stigmatophora. Under all conditions the extent of accumulation was in the order: Rh > Pd >> Pt. In short-term (24-h) exposures, accumulation isotherms were quasi-linear up to PGE concentrations of 30 ug L-1, although Pd displayed convexity, hence saturation of available binding sites, at greater concentrations. The pH, adjusted between about 5.5 and 9.5 by addition of acid or base, did not have a great impact on PGE accumulation, with Rh displaying a moderate increase in accumulation and Pd a moderate reduction with increasing pH. More important, all PGE displayed a significant reduction in accumulation on a weight-normalized basis with increasing concentration of algae, an effect not reported for metal-marine algal interactions previously in the literature. Longer-term experiments showed that the rates of both overall accumulation and internalization were greatest for Pd and least for Pt. Consistent with this observation, the toxicity to C. stigmatophora evaluated by both pigment content and growth rate, was significantly greater for Pd than for Pt. Differences in the biogeochemical behaviours among the PGE are attributed to differences in their aqueous speciation in seawater, different affinities for the algal surface, different tendencies to cross the cell membrane, and especially with regard to Pd and Pt, differences in the rates of these interactions. Thus, although the equilibrium chemistries of Pd and Pt are very similar, their differential biogeochemistries are the result of kinetic constraints on reactions involving the latter. Because the environmental concentrations of PGE are predicted to increase with increasing emissions from vehicles and hospitals, the results of this study make an important contribution to an improved understanding of the likely effects and fates of these emerging contaminants in the marine environment. The results are also more generally important to an improved understanding of the interactions of trace metals with microalgae in seawater.
|
138 |
Micro-particles as cellular delivery devicesAlexander, Lois Meryl January 2009 (has links)
Narrowly dispersed amino-functionalised polystyrene microspheres, with a range of diameters, were successfully synthesised via emulsion and dispersion polymerisation. Fluorescent labelling allowed cellular translocation to be assessed in a variety of cell lines and was found to be very high, but controllable, whilst exhibiting no detrimental effect on cellular viability. In order to fully determine the mode of microsphere uptake, “beadfected” melanoma (B16F10) cells were studied using both chemical and microscopic methods. Uptake was found to be wholly unreliant upon energetic processes, with microspheres located cytoplasmically and not encapsulated within endosomes, an important characteristic for delivery devices. In order to demonstrate the effective delivery of exogenous cargo mediated by microspheres, short interfering (si)-RNAs were conjugated to beads and investigated for the gene silencing of enhanced green fluorescent protein (EGFP) in cervical cancer (HeLa) and embryonic (E14) stem cells. EGFP knockdown was found to be highly efficient after 48 – 72 hours. Dual-functionalised microspheres displaying a fluorophore (Cy5) and siRNA allowed only those cells beadfected with the delivery vehicle (and thus containing siRNA) to be assessed for EGFP expression, yielding an accurate assessment of microsphere-mediated gene silencing. In addition, by manipulation of the microsphere preparation conditions, micro-doughnuts and paramagnetic microspheres were produced and their cellular uptake assessed. Paramagnetic microspheres were found to enter cells efficiently and were subsequently used to bias the movement of beadfected cells in response to an externally applied magnet, while micro-doughnuts were found to exhibit cell selective properties and were noted to traffic specifically to the liver in vivo.
|
139 |
The influence of muscle fibre recruitment on VO2 kineticsDiMenna, Fred J. January 2010 (has links)
When O2 uptake at the lung is used to characterise the oxidative metabolic response to increased contractile activity ( O2 kinetics) in exercising muscle, the O2 profile reflects the combined influence of all involved muscle fibres. Consequently, during high-intensity exercise that mandates activation of fibres with considerable metabolic diversity (e.g., both principal fibre types), response characteristics specific to discrete segments of the recruited pool cannot be determined. The purpose of this thesis was to identify fibre-type-specific effects of conditions that might impact O2 delivery and/or motor unit recruitment patterns on O2 kinetics by using two models that increase fibre recruitment homogeneity during exercise transitions. In four experiments, subjects initiated high-intensity exercise from a moderate baseline (i.e., performed ‘work-to-work’ transitions; M→H) to target higher-order fibres, and in two experiments, subjects cycled at extremely slow and fast pedal rates to skew recruitment toward slow- and fast-twitch fibres, respectively. At mid-range contraction frequency, O2 kinetics (as indicated by the primary time constant, τp) was slower for M→H compared to unloaded-to-high-intensity transitions (U→H) (e.g., 42 v. 33 s; Ch 4) and this slowing was ~50% greater for M→H in a supine body position (decreased oxygenation; Ch 6). Slower kinetics was also present for U→H cycling at fast compared to slow pedal rates (τp, 48 v. 31 s; Ch 8). Conversely, M→H slowing relative to U→H was absent at extreme cadences (36 v. 31 s and 53 v. 48 s for slow and fast, respectively; Ch 7). After ‘priming’ (increased oxygenation), τp was reduced for U→H after fast-cadence priming only (Ch 8) and for M→H in the supine position (Ch 6), but unaffected for upright cycle and prone knee-extension M→H, for which priming reduced the O2 slow component and delayed-onset fibre activation (as indicated by iEMG; Chs 4 and 5). These results provide evidence in exercising humans that high-order fibres possess innately slow O2 kinetics and are acutely susceptible to interventions that might alter O2 delivery to muscle.
|
140 |
The study of muscle metabolism in young people using 31P-magnetic resonance spectroscopyBarker, Alan Robert January 2008 (has links)
The purpose of this thesis is to extend understanding of the muscle metabolic responses of children and adolescents during exercise using the non-invasive technique of 31P-magnetic resonance spectroscopy (31P-MRS). The first experimental paper examined the reliability of measuring parameters of muscle metabolism in 11-12 year old children over three exhaustive incremental tests using a single-legged quadriceps ergometer. Exercise performance (peak power: ~ 10% coefficient of variation [CV]) and metabolic variables (muscle phosphate and pH intracellular thresholds [IT]: ~ 10% CV, and pH: ~ 1% CV at exhaustion) demonstrated good reliability, whereas the ratio of inorganic phosphate to phosphocreatine (Pi/PCr) at exhaustion had poor reproducibility (~ 50% CV). The second paper examined the influence of age and sex on the muscle metabolic responses during incremental exercise in 9-12 year old children and young adults. The Pi/PCr and pH responses before and at the ITs were independent of age and sex, although during exercise above the ITs, the anaerobic energy contribution (increase in Pi/PCr, fall in pH) was higher in adults than children and in females compared with males, indicating an intensity dependence on age- and sex-related differences in muscle energetics. The third paper examined the relationship between the dynamics of muscle PCr, a putative controller of muscle respiration, and pulmonary oxygen uptake (pVO2) in 9-10 year old children during moderate intensity quadriceps and cycling exercise respectively. No differences were found between the PCr and phase II VO2 time constants at the onset (PCr 23 s [SD 5] vs. pVO2 23 s [SD 4]; P=1.000) or offset (PCr 28 s [SD 5] vs. pVO2 29 s [SD 5]; P=1.000) of exercise, suggesting an age-related slowing of the phosphate linked controller(s) of mitochondrial oxidative phosphorylation may underlie the faster pVO2 kinetics found in children compared to adults. The final experimental chapter tested this hypothesis, but no age or sex related differences were found in the PCr kinetic time constant at the onset (boys: 21 s [SD 4]; girls: 24 s [SD 5]; men: 26 s [SD 9]; women: 24 s [SD 7], P>0.200) or offset (boys: 26 s [SD 5]; girls: 29 s [SD 7]; men: 23 s [SD 9]; women: 29 s [SD 7], P>0.070) of exercise. In conclusion, this thesis has demonstrated that muscle metabolic parameters determined by 31P-MRS are suitable for the study of developmental exercise metabolism. During exercise below the metabolic ITs, the phosphate-linked regulation of muscle respiration is comparable between children and adults, although during exercise above the ITs children are characterised by a lower ‘anaerobic’ energy turnover than adults, indicating an age-related modulation of metabolic control during high intensity exercise.
|
Page generated in 0.0551 seconds