Spelling suggestions: "subject:"anda X-Ray diffraction"" "subject:"anda X-Ray iffraction""
131 |
Synthesis, characterisation and adsorption properties of metal-organic frameworks and the structural response to functionalisation and temperatureMowat, John P. S. January 2012 (has links)
The synthesis of a scandium aluminium methylphosphonate ScAl₃(CH₃PO₃)₆ isostructural to the aluminium methylphosphonate AlMePO-α and with permanent microporosity is reported here for the first time. Structural characterisation of three lanthanide bisphosphonate structures (I,II,III) with the light lanthanides and N,N'-piperazine bis-(methylenephosphonic acid) and its 2-methyl and 2,5-dimethyl derivatives is described. The framework of structure type I shows considerable flexibility upon dehydration with a symmetry change from C2/c, a = 23.5864(2) Å, b = 12.1186(2) Å, c = 5.6613(2) Å, β = 93.040(2)˚) in the hydrated state to P2₁/n, a = 21.8361(12) Å, b = 9.3519(4) Å, c = 5.5629(3) Å, β = 96.560(4)˚ after dehydration. This cell volume reduces by 27% on dehydration and is accompanied by a change in the conformation of the piperazine ring from chair to boat configuration. The structures of type I (hydrated and dehydrated) were refined against synchrotron powder X-ray diffraction data. Despite the reversible hydration and flexibility, the structures possess no permanent porosity. Investigation of the solvothermal chemistry of scandium carboxylates identified routes to 7 framework structures 5 of which were previously unreported in the scandium system. Lower temperature solvothermal reactions using terephthalic acid (80 - 140°C using dimethylformamide and diethylformamide) yielded two scandium terephthalates, MIL-88B(Sc) and MIL-101(Sc), identified by laboratory X-ray powder diffraction. Whereas higher temperature (160 – 220°C), reactions gave MIL-53(Sc) and Sc₂BDC₃. Further study with the tri- and tetra-carboxylate linkers, trimesic acid, 3,3',5,5'-azobenzenetetracarboxylic acid and pyromellitic acid yielded MIL-100(Sc), Sc-ABTC and Sc₄PMA₃ respectively. Structural identification of MIL-100(Sc) and Sc-ABTC was performed by means of X-ray powder diffraction analysis and of Sc₄PMA₃ by single crystal X-ray diffraction. The structure of a small pore scandium terephthalate Sc₂BDC₃ was investigated as a function of temperature and of functionalization. In situ synchrotron X-ray diffraction data, collected on a Sc₂BDC₃ in vacuo, enabled a phase change from orthorhombic Fddd to monoclinic C2/c and the associated structural effects to be observed in detail. The orthorhombic structure displayed a negative thermal expansivity of 2.4 × 10⁻⁵ K⁻¹ over the temperature range 225 – 523 K which Rietveld analysis showed to be derived from carboxylate group rotation. Motion within the framework was studied by ²H wide-line and MAS NMR on deuterated Sc₂BDC₃ indicating π flips can occur in the phenyl rings above 298 K. The effects of functionalization on the Sc₂BDC₃ framework were investigated by reactions using the 2-amino- and 2-nitroterephthalic acid and gave evidence for a strong structural effect resulting from inclusion of the functional groups. The structure of Sc₂BDC₃ and the functionalised derivatives were solved using Rietveld analysis on synchrotron X-ray powder diffraction data. Sc₂(NH₂-BDC)₃ was solved using the orthorhombic Sc₂BDC₃ framework starting model and, over the temperature range studied, stayed orthorhombic Fddd. Sc₂(NO₂-BDC)₃, was shown to be monoclinic C2/c over the same temperature range, a result of the steric effects of the bulky –NO₂ group in a small pore framework. Partial ordering of the functional groups was observed in both Sc₂(NH₂-BDC)₃ and Sc₂(NO₂-BDC)₃. The strength of interaction for the Sc₂(NH₂-BDC)₃ with CO₂ was higher than that of the parent Sc₂BDC₃ due to the strong –NH₂•••CO₂ interaction. Despite the inclusion of a relatively large –NO₂ group along the walls of a channel ~4 Å in diameter the Sc₂(NO₂-BDC)₃ still showed permanent microporosity to CO₂ (2.6 mmol g⁻¹) suggesting that there must be some motion in the -NO₂ group to allow the CO₂ molecules to diffuse through the channels. The scandium analogue of the flexible terephthalate MIL-53, a competitive phase in the synthesis of Sc₂BDC₃, was prepared and characterised by Rietveld analysis on synchrotron X-ray powder diffraction data using a combination of literature structural models and models obtained from single crystal X-ray diffraction experiments. Experimental solid state ⁴⁵Sc, ¹³C and ¹H NMR data combined with NMR calculations on the structural models produced from diffraction analysis were used to identify the hydrated (MIL-53(Sc)-H₂O), calcined (MIL-53(Sc)-CAL) and high temperature (MIL-53(Sc)-HT) structures of MIL-53(Sc). Further to this the 2-nitroterephthalate derivative, MIL-53(Sc)-NO₂, was prepared and characterised using single crystal X-ray diffraction. The adsorptive properties of the parent terephthalate and the functionalised derivative were compared and in both cases showed a breathing behaviour, exemplified by steps in the adsorption isotherms. MIL-53(Sc)-CAL was found to possess a closed pore configuration in the dehydrated state, a previously unreported structural form for the MIL-53 series, and its presence can be observed in the low pressure region of the CO₂ adsorption isotherm as a non-porous plateau. The selectivity and separation properties of two MOFs, the nickel bisphosphonate, STA-12(Ni) and the scandium carboxylate, Sc₂BDC₃ were measured using breakthrough curves on mixtures of CH₄ and CO₂. The results showed both materials to be highly selective in the adsorption of CO₂ over CH₄. Column testing using a PLOT column of STA-12(Ni) and a packed column of Sc₂BDC₃ showed promising preliminary results with STA-12(Ni) displaying effective, baseline separation on low boiling point hydrocarbon mixtures (C1 – C4) while the smaller pore channels of Sc₂BDC₃ were effective in the size selective separation of higher boiling point branched and straight-chain hydrocarbons (C5 – C7).
|
132 |
Time-resolved lattice measurements of shock-induced phase transitions in polycrystalline materialsMilathianaki, Despina 08 October 2010 (has links)
The response of materials under extreme temperature and pressure conditions is a topic of great significance because of its relevance in astrophysics, geophysics, and inertial confinement fusion. In recent years, environments exceeding several hundred gigapascals in pressure have been produced in the laboratory via laser-based dynamic loading techniques. Shock-loading is of particular interest as the shock provides a fiducial for measuring time-dependent processes in the lattice such as phase transitions. Time-resolved x-ray diffraction is the only technique that offers an insight into these shock-induced processes at the relevant spatial (atomic) and temporal scales.
In this study, nanosecond resolution x-ray diffraction techniques were developed and implemented towards the study of shock-induced phase transitions in polycrystalline materials. More specifically, the capability of a focusing x-ray diffraction geometry in high-resolution in situ lattice measurements was demonstrated by probing shock-compressed Cu and amorphous metallic glass samples. In addition, simultaneous lattice and free surface velocity measurements of shock-compressed Mg in the ambient hexagonal close packed (hcp) and shock-induced body centered cubic (bcc) phases between 12 and 45 GPa were performed. These measurements revealed x-ray diffraction signals consistent with a compressed bcc lattice above a shock pressure of 26.2±1.3 GPa, thus capturing for the first time direct lattice evidence of a shock-induced hcp to bcc phase transition in Mg. Our measurement of the hcp-bcc phase boundary in Mg was found to be consistent with the calculated boundary from generalized pseudopotential theory in the pressure and temperature region intersected by the principal shock Hugoniot. Furthermore, the subnanosecond timescale of the phase transition implied by the shock-loading conditions was in agreement with the kinetics of a martensitic transformation. In conclusion, we report on the progress and future work towards time-resolved x-ray diffraction measurements probing solid-liquid phase transitions in high Z polycrystalline materials, specifically Bi. / text
|
133 |
Studies of Inorganic Layer and Framework Structures Using Time-, Temperature- and Pressure-Resolved Powder Diffraction TechniquesKrogh Andersen, Anne January 2004 (has links)
<p>This thesis is concerned with <i>in-situ</i> time-, temperature- and pressure-resolved synchrotron X-ray powder diffraction investigations of a variety of inorganic compounds with twodimensional layer structures and three-dimensional framework structures. In particular, phase stability, reaction kinetics, thermal expansion and compressibility at non-ambient conditions has been studied for 1) Phosphates with composition <i>M</i><i>IV</i>(HPO<sub>4</sub>)<sub>2</sub>·<i>n</i>H<sub>2</sub>O (<i>M</i><i>IV</i> = Ti, Zr); 2) Pyrophosphates and pyrovanadates with composition<i> M</i><i>IV</i>X<sub>2</sub>O<sub>7 </sub>(<i>M</i><i>IV</i> = Ti, Zr and X = P, V); 3) Molybdates with composition ZrMo<sub>2</sub>O<sub>8</sub>. The results are compiled in seven published papers and two manuscripts.</p><p>Reaction kinetics for the hydrothermal synthesis of α-Ti(HPO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O and intercalation of alkane diamines in α-Zr(HPO<sub>4</sub>)<sub>2</sub>·H<sub>2</sub>O was studied using time-resolved experiments. In the high-temperature transformation of γ-Ti(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>)·2H<sub>2</sub>O to TiP<sub>2</sub>O<sub>7</sub> three intermediate phases, γ'-Ti(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>)·(2-x)H<sub>2</sub>O, β-Ti(PO<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>) and Ti(PO<sub>4</sub>)(H<sub>2</sub>P<sub>2</sub>O<sub>7</sub>)<sub>0.5</sub> were found to crystallise at 323, 373 and 748 K, respectively. A new tetragonal three-dimensional phosphate phase called τ-Zr(HPO<sub>4</sub>)<sub>2</sub> was prepared, and subsequently its structure was determined and refined using the Rietveld method. In the high-temperature transformation from τ-Zr(HPO<sub>4</sub>)<sub>2</sub> to cubic α-ZrP<sub>2</sub>O<sub>7 </sub>two new orthorhombic intermediate phases were found. The first intermediate phase, ρ-Zr(HPO<sub>4</sub>)<sub>2</sub>, forms at 598 K, and the second phase, β-ZrP<sub>2</sub>O<sub>7</sub>, at 688 K. Their respective structures were solved using direct methods and refined using the Rietveld method. <i>In-situ</i> high-pressure studies of τ-Zr(HPO<sub>4</sub>)<sub>2 </sub>revealed two new phases, tetragonal ν-Zr(HPO<sub>4</sub>)<sub>2 </sub>and orthorhombic ω-Zr(HPO<sub>4</sub>)<sub>2</sub> that crystallise at 1.1 and 8.2 GPa. The structure of ν-Zr(HPO<sub>4</sub>)<sub>2</sub> was solved and refined using the Rietveld method.</p><p>The high-pressure properties of the pyrophosphates ZrP<sub>2</sub>O<sub>7</sub> and TiP<sub>2</sub>O<sub>7</sub>, and the pyrovanadate ZrV<sub>2</sub>O<sub>7 </sub>were studied up to 40 GPa. Both pyrophosphates display smooth compression up to the highest pressures, while ZrV<sub>2</sub>O<sub>7</sub> has a phase transformation at 1.38 GPa from cubic to pseudo-tetragonal β-ZrV<sub>2</sub>O<sub>7</sub> and becomes X-ray amorphous at pressures above 4 GPa.</p><p>In-situ high-pressure studies of trigonal α-ZrMo<sub>2</sub>O<sub>8</sub> revealed the existence of two new phases, monoclinic δ-ZrMo<sub>2</sub>O<sub>8 </sub>and triclinic ε-ZrMo<sub>2</sub>O<sub>8</sub> that crystallises at 1.1 and 2.5 GPa, respectively. The structure of δ-ZrMo<sub>2</sub>O<sub>8 </sub>was solved by direct methods and refined using the Rietveld method.</p>
|
134 |
The design and construction of a solid state femtosecond laser system and its application to chemistryTompkins, Richard John January 1999 (has links)
No description available.
|
135 |
The preparation, properties and structure of poly-p-xylyene and its copolymersLightfoot, Philip Kenneth January 2000 (has links)
No description available.
|
136 |
Nanoparticles prepared from reactive metal surfactantsWarne, Barnaby January 2000 (has links)
No description available.
|
137 |
Studies of float glass surfaces by neutron and x-ray reflectionDalgliesh, R. M. January 2001 (has links)
No description available.
|
138 |
Synthesis of high temperature superconductors HgBaâ†2CuOâ†4â†+â†#delta# and YBaâ†2Cuâ†3Oâ†7â†-#delta# and characterisation by 1/f noiseBennett, Marc January 1999 (has links)
No description available.
|
139 |
Low angle protein phasingMorris, Darryl William Seymour January 2000 (has links)
No description available.
|
140 |
Bimetallic tris-oxalate magnets : synthesis structure and propertiesNuttall, Christopher John January 1998 (has links)
No description available.
|
Page generated in 0.1156 seconds