• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2337
  • 410
  • 243
  • 173
  • 159
  • 81
  • 66
  • 50
  • 44
  • 28
  • 23
  • 23
  • 13
  • 13
  • 10
  • Tagged with
  • 4382
  • 4382
  • 884
  • 543
  • 400
  • 390
  • 375
  • 374
  • 351
  • 329
  • 311
  • 308
  • 284
  • 281
  • 279
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Urban Vulnerability: Bridging Systems and People-Centred Approaches in Dawei, Tanintharyi Region, Myanmar

Martin, Taylor January 2016 (has links)
This research discusses urban vulnerability to environmental change in Dawei, Myanmar through the analysis of the exposure and sensitivity of urban systems. The scope of this research attempts to encompass the complexity of multi-scalar relationships between the exposure and sensitivity of urban systems and wider supporting ecological systems to climatic and non-climatic shocks and stresses. Moreover, this research aims to bridge systems and people-centred approaches by considering the existing sensitivity of vulnerable populations living in Dawei through the use of two case studies. Specifically, an urban livelihoods approach was used to consider the entitlements, priorities, and capacities of households to cope with shocks and stress given existing challenges. The analysis of findings have been presented according to nested scales, beginning with the macro-level in the consideration of the exposure of urban socio-ecological systems; the meso-level through the analysis of the differential exposure and sensitivity of two communities living in Dawei in light of access to urban infrastructure and services; and lastly, the micro-level through the analysis of household sensitivity through the application of a livelihoods approach.
112

Implementing community renewables: institutional work in South Africa's renewable energy procurement programme

Wlokas, Holle Linnea January 2017 (has links)
In 2014, for the first time in its history, South Africa fed the national electricity grid with electricity generated through utility-scale renewable energy projects. The Renewable Energy Independent Power Producer Procurement Programme (REIPPPP) is the policy instrument driving this change. The process requires bidding private energy companies to commit resources in alleviation of local socio-economic needs. This thesis analyses the question how the institutions evolve in the implementation of community benefit requirements. The theoretical frameworks of institutional work and logics helps to analyse this new organizational field and interaction of various actors in government, industries and communities. An action research approach grounds this research empirically and aims to create the opportunity for actors to reflect on their actions and engagement in the community benefit implementation process. The research asks how are government, companies and communities shape institutions in the implementation of the community benefit requirements in South Africa's REIPPPP? The study first analyses the procurement requirements for community benefit and ownership, then, secondly, reviews the first 64 approved project bids for suggestions made in response to these requirements. A third research step involves fieldwork in 13 wind and solar projects across the country, the fieldwork consisting of interviews with project stakeholders about their experiences. The research negotiates access to an emerging and competitive, but also enquiring industry, one that has shared with the researcher important insights into its evolving community engagement and its development practices and considerations. The findings reveal that, in the implementation of South Africa's community renewables, government and companies dominate institutional work efforts in the stages of policy formulation and project development. But communities, the least informed and capacitated actor among the three, face the results and they have particular ways of responding, including corrective and disruptive ways. Reflective spaces are dominated by industry and strategically exclude communities from both asserting their experiences as well as from the opportunity to participate in creating collective understanding and agreeable processes that would foster the long-term relationship between company and community. This is a shortcoming that requires urgent attention to ensure positive institutional work and developmental impact.
113

Impact of climate change and irrigation development on hydropower supply in the Zambezi River Basin, and implications for power sector development in the Southern African Power Pool

Spalding-Fecher, Dennis Randall January 2018 (has links)
This thesis investigates the hypothesis that the combination of future changes in climate and development (primarily irrigation) in the Zambezi River Basin (ZRB) threatens the technical and economic viability of existing and planned hydropower plants, and in turn the expansion plans and costs of the regional power system for Southern African countries. This hypothesis is evaluated using the following three questions to structure the analysis. ● How could future climate and irrigation expansion in the Zambezi River Basin affect hydropower generation potential? ● How could development in Southern Africa affect power demand, and how might this demand be met? ● How could the changes in water availability for hydropower (i.e. due to climate change and development) affect regional electricity expansion plans, generation costs and greenhouse gas emissions? The methodological tool used to address the first research question is the Water Evaluation and Planning (WEAP) scenario modelling system, developed by Stockholm Environment Institute. WEAP is a combined hydrological and water allocation model that is widely used internationally. The modelling demonstrates that the change in future climate is the overwhelming driver of future production at almost all hydropower plants in the ZRB over the study period of 2010-2070. The difference in mean generation under wetting and drying climates (i.e. difference between the values under wet and dry scenarios) is 12-16% for individual existing plants. This difference is as much as 30% for individual new plants, with all plants other than Batoka showing variation in mean annual generation of more than 13%. The impact of irrigation, on the other hand, is mainly an issue for plants downstream from Kariba, and even then the magnitude is typically less than a third of the impact of the alternative climates. The water modelling results therefore do not vary significantly across alternative development futures, because the accelerated irrigation development is still not large enough to dramatically impact hydropower. The second research question is analysed using Stockholm Environment Institute's Long- Range Energy Alternatives Planning (LEAP) model to trace the impacts of socio-economic development on electricity supply and demand. The analysis combines a simulation of current utility plans with a least cost optimisation to meet the remainder of supply needed over the long term. The analysis shows that the underlying socio-economic drivers of demand lead to both a dramatic increase in total electricity demand and a shift across sectors and countries within the region. Total electricity demand for the Southern African Power Pool (SAPP) region increases by 8-14 times over period from 2010 to 2070, with the combined demand from the rapidly growing countries of Democratic Republic of Congo (DRC), Mozambique and Zambia becoming larger than South African demand by 2070. At the sectoral level, the share of total demand from the extractive and manufacturing sectors increases from 59% in 2010 to 70% in 2070 under the most optimistic development scenario, based on a compound annual growth rate of consumption in excess of 5%. Activity level growth is the main driver of demand growth. Comparison with other studies in the region show that the mid-term demand estimates (e.g. 2025-2030) in this study are generally within the range of other research, with somewhat higher demand estimates from the most optimistic development scenario. Total electricity supply required over the longer term is met through the addition of 400-1400 GW of new capacity, or 8-20 times the current capacity of the region. More strikingly, the power mix shifts from almost 80% coal-fired power to 24-44% coal by 2070, with the balance being supplied mainly by solar, wind, hydropower and nuclear generation. The regional shift is no less dramatic, with South Africa's share of total generation declining from 84% to only a third, based on the higher growth rates in countries such as DRC, Mozambique and Zambia. The third research question is the most important in terms of the original contribution of this PhD thesis. Applying the WEAP and LEAP tools to an integrated multi-country system is a methodological advance pioneered in this thesis, showing that the integrated methodology can provide information to address not only the immediate questions about generation choices under an uncertain future climate, but also system costs and GHG emissions. The analysis shows that the reduction in hydropower generation under a drying climate leads to a shift in both capacity expansion choices and the operation of the regional power system, while the increases in hydropower output under a wetting climate are smaller. In other words, the "downside" of future climate changes is larger than the potential "upside". At an aggregate level, the increases in generation costs are a small share of total generation costs (i.e. less than 1% over the full study period compared to the baseline climate). However, the impact on generation costs for hydro-dependent countries such as Mozambique, Zambia and Zimbabwe is considerably larger, and these countries also gain more under a wetting climate. Finally, because some hydropower could be displaced by coal, regional GHG emissions could increase by more than 6 MtCO2 per year in the medium term, or the equivalent of a large coalfired power station. This research has important policy implications for the water and electricity sector in the region. The potential transformation of the electricity supply sector would require a fundamental shift in resource use, grid management and infrastructure development in the region. The shift in the resource base for electricity generation will pose challenges for grid integration and balancing supply and demand across countries and load centres. Historically, the development of transmission capacity, and the resulting trade in electricity, has been constrained by the political and economic realities of the region. There are signs that the politics could be shifting, however, for political, economic and environmental reasons. In addition, the relatively low consumption of water in the Zambezi River Basin in the past meant that explicit trade-offs across sectors and across countries posed less of a challenge for the basin overall. This is very likely to change in the future, as increased demand from all sectors, and major potential changes in climate will require more explicit agreements across both countries and user groups on how best to utilise a limited resource. This research demonstrates the tools that could be used to integrate both climate change and upstream development demands into the feasibility studies before investment decisions are made. The research also illustrates the first steps toward integrating climate change and upstream development considerations into national and regional electricity planning. The electricity and water sectors are important contributors to the development of the Southern Africa, and hydropower in the ZRB lies at the intersection of these fields. Climate change, however, has the potential to add increased stress on these sectors, both directly and indirectly, and yet is not being considered in many individual hydropower power investments, or in national or regional electricity planning. The integrated scenario analysis approach in this thesis demonstrates how the impacts of climate change, as well as increased irrigation demand for water, could be assessed not only for specific hydropower plants and for the entire sector power sector. Preparing for this possible range of future climates can increase the resilience of the sector and reduce the risk of stranded assets in the power sector.
114

Numerical Modeling of Thermal and Geotechnical Response of Soils in Canadian No-Permafrost Regions to Climate Warming

Marrah, Mohammed Yassir 13 August 2021 (has links)
In the present study, methodological approaches to assess the impact of climate change on the thermal and thermo-hydro-mechanical (THM) regimes of the ground in some selected Canadian no-permafrost areas (Ottawa, Sudbury, Toronto) is proposed. A modeling study to evaluate ground temperature variations due to global warming is conducted using TEMP/W software from Geoslope ltd. The effect of future climate change projections, up to 2100, on the ground freeze-thaw cycle frequencies, frost penetration depth, and frost duration is assessed in some selected sites located in the Canadian no-permafrost region. Moreover, three softwares (TEMP/W, SEEP/W and SIGMA/W from Geoslope Ltd) have been used to establish a numerical tool that enable to assess the effect of global warming on THM response of the grounds in the selected Canadian no-permafrost areas. TEMP/W and SEEP/W were coupled in a thermo-hydraulic analysis to assess the impact of global warming on the hydraulic regime of the ground. Afterwards, SEEP/W and SIGMA/W were coupled in a hydraulic-mechanical analysis to study the impact of climate change induced porewater pressures change on the mechanical regime of the ground in some no-permafrost regions. Simulation study to assess the effect ground temperature changes on key geotechnical properties of the soils in the selected sites is conducted by using the aforementioned numerical tool. The change of the porewater pressure changes and distributions in the soil induced by global warming is studied. The effect of climate change on the ground consolidation or settlement in the selected no-permafrost sites is also investigated. Finally, this study provides a simulation of a bridge pile foundation ground to detect the THM changes around the pile structure due to climate warming. The results indicate that climate change will affect the thermal regime of the ground in the selected Canadian no permafrost areas. Ground temperature in the studied no-permafrost regions will likely increase by 2 to 4 C by 2100 due to global warming. Furthermore, the frost penetration depth will be significantly reduced in all study areas. It is also found that the frost duration will experience a gradual reduction with time up to 2100. In addition, the simulation results showed minimal influence of global warming on the porewater pressure distribution and magnitude in the studied grounds. Aligned to this, climate change did not seem to have a significant effect on the consolidation behavior or settlement of the ground in the studied no-permafrost areas. The simulation of the foundation ground confirms the results mentioned above, as temperature changes around the pile structure falls within the same range found in the thermal analysis. Porewater pressure distributions and ground settlement are not significantly affected along the pile perimeter. Overall, the design of pile foundation in the Canadian no-permafrost region will not be significantly affected by climate change up 2100. The tools developed and results obtained will be useful for the geotechnical design of climate-adaptive civil engineering or transportation structures in Canadian no permafrost areas.
115

LOCAL IMPACTS OF CLIMATE CHANGE-INDUCED MIGRATION

Yong J Kim (8085530) 06 December 2019 (has links)
First Essay: We exploit temporally disaggregated data on weather anomalies andtemporary migration to examine the effect of the former on the latter, and the ef-fectiveness of migration as a coping mechanism to maintain consumption in the faceof adverse weather conditions. We construct a continuous measure of migration thatincreases both with the number of people leaving, and with the length of time theystay away. Our results show that, while weather anomalies do trigger temporary mi-gration, they only do so when they occur before or rather early in the growing season.This suggests that households have a limited ability to respond to unexpected shockswhen they occur late in the season. We also find that weather anomalies can affectmigration patterns several months after they take place and discuss possible mecha-nisms. We find that, conditional on these temporal patterns, households lacking onlabor force endowment and social networks are particularly limited in their abilityto use migration as a coping mechanism and remain, consequently, more vulnerableto shocks. Our analysis reveals how temporal aggregation of weather shocks, widelyimplemented in previous studies, can obscure substantial heterogeneity in migrationresponse, as well as their ability to mitigate adverse impacts.<br><div><br></div><div>Second Essay: The study uses the same framework as the first essay. It uses tem-porally disaggregated data on weather anomalies and temporary migration. However,this study expands the first essay by considering agricultural labor use. Our resultsshow that agricultural labor hiring will not increase, although there is an increasein temporary labor migration by abnormal weather driving the previous agriculturalseason. This suggests that households adjust their agriculture plan with temporary labor migration consideration. When a drought happens in the current agriculturalseason, our result shows that irrigation has mediation effects on hired agricultural la-bor. Our analysis reveals how temporally disaggregated analysis yields more detailedresults for market outcomes.<br></div><div><br></div><div>Third Essay: Sea-level rise induced migration studies usually investigate inter-county or inter-regional migration. However, sea level rise does not affect a countyuniformly. Instead, it affects only specific areas with different socio-economic sta-tus. The objective of this study is to provide information on socio-economic geog-raphy change associated with sea-level rise. We simulate the spatial redistributionof households in the United States coastal areas affected by the expected sea-levelrise. Towards that end, we use a spatial microsimulation. The spatial microsimula-tion proceeds in two steps. In the first step, a synthetic population is generated foreach spatial unit. In the second step, the synthetic population is redistributed as aresponse to sea-level rise. Our results show that, most of the households that migratedue to the sea-level rise, will migrate within the same or to a neighboring census tractareas<br></div>
116

An exploration of South Africa's wind climate using station records and reanalysis data

Argent, Brendan January 2016 (has links)
Sparse information about the wind climate of South Africa behooves an exploration of the drivers of surface wind speed, especially in the context of wind resource assessment. This work quantifies the coupling between the synoptic circulation states and station-scale flows to develop a process-based regionalisation of wind regimes over the country .A thorough inspection of available South African Weather Service (SAWS) wind records is conducted and a quality control procedure is applied. The procedure reveals a large proportion of the data are missing and existing data contain numerous errors such that only107 of the original 960 stations passed the quality control criteria. However, data from these107 stations only overlap temporally 2% of the time, which makes the data inappropriate fora regionalisation procedure. To ameliorate this, a method for incorporating bias-corrected time series data from a reanalysis data set is developed. Data from the 0.3◦ resolution hourly Climate Forecast System Reanalysis (CFSR) be-tween 1989-2010 is selected to improve the temporal coverage of the station data. The raw CFSR data overestimates wind speeds and underestimates the temporal variability and long-term trends. A bias correction method based on the wind speed and direction, time of day and month of the year is developed which successfully removes the mean error on wind speed and direction and improves the correlation with station records. This is achieved without disrupting spatial correlation patterns. Corrected and extended wind time series from each station site are used for the regionalisation. The regionalisation uses a self-organising map (SOM) to define the archetypal synoptic circulation patterns in the reanalysis data set and the influence of these on the local wind climate is quantified. 12 representative atmospheric states are defined by the SOM that are consistent with the existing literature and capture the major synoptic circulation states. A hierarchical clustering is then used to define wind climate regions based on the coupling between these circulation states and the extended station data. Six relatively cohesive spatial wind-climate groupings are identified that are physically consistent with the driving synoptic environment and are characteristic in terms of terrain and response to synoptic drivers. This process-based regionalisation facilitates a future assessment of potential changes in the wind climate of South Africa as a result of a warming world.
117

Understanding a high resolution regional climate model's ability in simulating tropical East Africa climate variability and change

Osima, Sarah Emerald January 2015 (has links)
Includes bibliographical references / The main aim of this thesis is to investigate the potential benefits of increasing resolution in regional climate models in the simulation of climate variability and change over East Africa. This study is based on two high resolution regional climate simulations with a horizontal resolution of 50km and 10km, respectively. These represent present day climate and a projection of future climate change over East Africa. The regional climate model (RCM) used here is HIRHAM5, which is driven by the global circulation model (ECHAM5). Downscaled ECHAM5 output is used to drive the 50km HIRHAM5 simulation for the period 1950-2100, and output from this simulation is used to drive the 10km simulation for three time slices: 1980-1999, representative for present-day climate and two time slices for near future (2046-2065) and far future (2080- 2099), respectively. HIRHAM5 is evaluated with respect to the observed mean climatologies of rainfall, surface temperature and surface winds over East Africa, and representations of the observed annual cycles and inter-annual variability of rainfall and surface temperature. This study utilizes reanalysis and observational datasets: a hindcast of HIRHAM5 forced with ERA Interim, as well as two observation datasets for temperature and rainfall. Since reanalyses aim to make "best use" of all available observations by making a physically consistent representation continuous in time and space, and since there is a paucity of observations over many parts of Africa, the ERAI reanalysis is also used as a best estimate for model evaluation. Additionally, for evaluation of the bimodal nature of East Africa's rainfall, especially over Tanzania, three stations run by the Tanzania Meteorological Agency were used. The model data used in th is evaluation ranges from 1980 to 2006 iv HIRHAM5 demonstrates reasonable skill in the reproduction of observed patterns of mean climatology of rainfall, surface temperature and winds over East Africa. Moreover, the patterns of annual cycles of rainfall and surface temperature in the bimodal nature of East Africa are well represented. Furthermore, the model showed reasonable skill in the representation of the inter- annual variability and ENSO signals as suggested by the observation. Despite these strengths, HIRHAM5 shows some shortcomings. One weakness of the model is the simulation of the magnitude of a given variable over a specific region. For example, HIRHAM5 driven by ERAI underestimates rainfall and overestimates surface temperature over the entire domain of East Africa. The higher resolution HIRHAM5 (10km resolution) overestimates rainfall over high ground. The model bias could be due in part to the inadequacy of the observation networks in East Africa, represented in this thesis by the CRU and FEWS datasets. However, these two datasets draw on some different sources and neither do they have the same resolution. FEWS is a high resolution data (0.1 o ) gridded satellite-derived precipitation estimate covering the entire African continent while CRU datasets is a relatively low resolution (0.5 o ) dataset based on rain gauge monthly precipitation only; in addition , near surface temperature is also available. As no reliable wind observations exist, wind data was taken from the ERA-Interim reanalysis. The different observational datasets do not agree particularly well, which impedes evaluating the quality of the HIRHAM5 simulations, in particular the high resolution one. So while the higher resolution HIRHAM5 appears to be generally reliable, caution must be exercised in formulating conclusions from the results, especially over high ground and remote areas without adequate observation data. Under these constraints, the results suggest HIRHAM5 may be useful for assessing climate variability and change over East Africa. A weakness of the analysis presented here is that only one combination of GCM and RCM could be investigated in depth due to computer and time constraints. Therefore the results presented here, if used in application for climate change adaptation, should be considered in conjunction with a broader suite of data, such from the CORDEX programme. This has potential to increase the reliability of information about climate variability and change at a regional to local level necessary for impact assessment.
118

Monitoring the Knysna forest : species, community and forest responses

Morris, Thomas 06 February 2017 (has links)
Forests are valuable ecosystems to society but are greatly threatened by changing factors from habitat conversion to climate change. South Africa's only extent of indigenous forest is predicted to disappear within the next 30 years. Many challenges are currently faced when trying to detect and interpret directional changes in forests which results in an urgent need to understand any effects that these change factors have on forest ecosystems. We investigate evidence for change in the old growth Lilyvlei Nature Reserve by monitoring growth and dynamics at various levels by examining a 20 year record of tree growth and stand dynamics. Through the inclusion of biodiversity measures and ecologically important plant traits, changes in forest dynamics and growth are investigated. Results show no total change in biomass across the 20 year period, although an intensification of extreme climatic events and dynamics indices were recorded for the second period. Significant correlations were found between community diversity measures and forest growth. Trait variables showed insignificant correlations with forest growth and dynamics. These results suggest that the Knysna forest is controlled by climatic variables and that increased diversity within communities result in increased growth. It is believed that changes in the forest may be masked by compositional shifts of just a few dominant species. These results become important, particularly in the light of changing climatic, atmospheric and environmental changes that threaten global ecosystems in the time to come. However, considering the brief 20 year period observed in a forest where the average individual has a life span of over a century, the importance of long term monitoring becomes an important component in the understanding of forest ecosystems.
119

Analysis of polarimetric satellite measurements suggests stronger cooling due to aerosol-cloud interactions

Hasekamp, Otto P., Gryspeerdt, Edward, Quaas, Johannes 22 October 2020 (has links)
Anthropogenic aerosol emissions lead to an increase in the amount of cloud condensation nuclei and consequently an increase in cloud droplet number concentration and cloud albedo. The corresponding negative radiative forcing due to aerosol cloud interactions (RFaci) is one of the most uncertain radiative forcing terms as reported in the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Here we show that previous observation-based studies underestimate aerosol-cloud interactions because they used measurements of aerosol optical properties that are not directly related to cloud formation and are hampered by measurement uncertainties. We have overcome this problem by the use of new polarimetric satellite retrievals of the relevant aerosol properties (aerosol number, size, shape). The resulting estimate of RFaci = −1.14 Wm 2 (range between −0.84 and −1.72 Wm 2) is more than a factor 2 stronger than the IPCC estimate that includes also other aerosol induced changes in cloud properties.
120

Hydraulic trait variation in Protea repens with change in climate in space and time

Kellermann, Jacobus January 2016 (has links)
Global climate change and atmospheric CO₂ concentrations are affecting all levels of biodiversity in a number of ways. For example, the unique vegetation of the Cape Floristic Region (CFR) is expected to experience increased temperatures while rainfall becomes more seasonal, resulting in stronger summer drought with greater hydraulic stress in plants. Increased CO₂ concentrations, on the other hand, are expected to relieve hydraulic stress in plants that utilize the C3 pathway for photosynthesis (most fynbos species), by reducing the amount of time they have to keep their stomata open to take up the CO₂ they require. Observed weather data suggest that rainfall has remained relatively stable over the last 21 years, while temperatures for the region have increased marginally. Here I explore variation in the hydraulic traits (leaf and xylem anatomy) of Protea repens (L.) across a spatial climatic gradient in the CFR relative to a common garden experiment. I then compare the contemporary trait-climate relationships with a 21 year old xylem anatomy dataset. In the common garden experiment I explore xylem and leaf trait variation in P. repens from thirteen populations representing a gradient in temperature and mean annual precipitation. Because trait-gradient relationships can be confounded by genetic differences between populations along the gradient, I used a common garden experiment to test the degree to which trait variation was genetically constrained among populations. My results show that xylem vessel diameters and an estimate of hydraulic conductance increased with increases in maximum temperature and soil moisture days across the spatial gradient. My results for the common garden experiment does however show genetically constrained intra-specific differences in xylem vessel morphology between populations. Despite this, differences in xylem vessel and leaf morphology between plants in the common garden and their source locality demonstrate that P. repens has some ability to respond to changes in the environment through phenotypic plasticity. To determine the response of P. repens to changes in climate over the past 21 years, I compared contemporary xylem anatomy to an existing dataset collected from the same sites in 1994. My results show no significant change in vessel diameters since 1994 even though temperatures and atmospheric CO₂ have increased, with no change in rainfall amount. These results suggest that either P. repens is not experiencing increased drought stress under current climate conditions, or that xylem vessel anatomy is not a good proxy for small changes in drought stress in this species. The effect of increased drought stress due to higher temperatures and associated evaporative demand may be alleviated by increased atmospheric CO₂ reducing the amount of time the plants have to keep their stomata open to take up the CO₂ they require. Similarly, it is possible that drought stress has not changed substantially over this period, because a reduction in wind run across the CFR may have balanced the increase in evaporative demand created by higher temperatures. At a plant level, P. repens may not respond to small increases in drought stress by utilising deep water. In addition, P. repens is potentially able to reduce stomatal conductance thereby alleviating xylem anatomical responses to the small change in temperature since 1994.

Page generated in 0.1574 seconds