• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 14
  • 13
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 207
  • 207
  • 35
  • 31
  • 27
  • 22
  • 21
  • 19
  • 19
  • 19
  • 18
  • 17
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Turning the tide against TB: Remaking ineffective host defenses into mechanisms for tuberculosis control

Zhang, Yanjia Jason 07 June 2014 (has links)
Most antibiotics, including the drugs currently used for treating tuberculosis (TB), were first discovered as molecules that inhibit bacterial growth in laboratory culture conditions and later translated to infection models and clinical use. Mycobacterium tuberculosis (Mtb) has evolved specifically to survive in its human host, and it is in this infectious context that new drugs need to work. The host environment is characterized by a multitude of antimicrobial defenses induced by the immune system, and we can leverage these defenses to kill Mtb in vivo. Mtb employs a diverse set of responses to survive host defenses. By blocking these responses, we can make Mtb more susceptible to host immunity, turning these previously impotent defenses into effective strategies of immune control.
42

Evaluation of strategies to combine multiple biomarkers in diagnostic testing.

Mohammed, Muna Balla Elshareef. January 2012 (has links)
A challenge in clinical medicine is that of correct diagnosis of disease. Medical researchers invest considerable time and effort to enhance accurate disease diagnosis. Diagnostic tests are important components in modern medical practice. The receiver operating characteristic (ROC) is a commonly used statistical tool for describing the discriminatory accuracy and performance of a diagnostic test. A popular summary index of discriminatory accuracy is the area under ROC curve (AUC). In the era of high-dimensional data, scientists are evaluating hundreds to multiple thousands of biomarkers simultaneously. A critical challenge is the combination of these markers into models that give insight into disease. In infectious disease, markers are often evaluated in the host as well as in the microorganism or virus causing infection, adding more complexity to the analysis. In addition to providing an improved understanding of factors associated with infection and disease development, combinations of relevant markers is important to diagnose and treat disease. Taken together, this presents many novel and major challenges to, and extends the role of, the statistical analyst. In this thesis, we will address the problem of how to select from multiple markers using existing methods. Logistic regression models offer a simple method for combining markers. We applied resampling methods (e.g., Cross-Validation and bootstrap) to adjust for overfitting associated with model selection. We simulated several multivariate models to evaluate the performance of the resampling approaches in this setting. We applied the methods to data collected from a study of tuberculosis immune reconstitution inflammatory syndrome (TB-IRIS) in Cape Town. Baseline levels of five biomarkers were evaluated and we used this dataset to evaluate whether a combination of these biomarkers could accurately discriminate between Tuberculosis Immune Reconstitution Inflammatory Syndrome (TB-IRIS) and non TB-IRIS patients, applying AUC analysis and resampling methods. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
43

Amorphous drug preparation using ball milling

Chieng Heng Liang, Norman, n/a January 2008 (has links)
Polymorphism and crystallinity are now recognised as important issues in drug development. This is shown by the increased amount of research in this area over recent years. In pharmaceutical development milling is an important unit operation for size reduction to improve powder handling, processing and dissolution rate. The aim of this thesis was to investigate the effect of ball milling (and cryo-milling) on the solid state properties, including amorphous drug formation, of pharmaceutical solids. Milling was carried out using an oscillatory ball mill (Mixer Mill MM301, Retsch GmbH & Co., Germany). In cryo-milling the milling jars were immersed in liquid nitrogen for three min before milling. XRPD was used as the main technique to evaluate the milled samples. Ranitidine hydrochloride (RAN) and indomethacin (INDO) were the model drugs used in this study. It was found that upon milling, RAN form 1 converts to RAN form 2 via an amorphous phase. A faster amorphization rate was observed when the crystalline samples were cryo-milled. Amorphous ranitidine hydrochloride was characterized to have a glass transition (T[g]) range of 13 to 30 �C and a crystallization exotherm (T[c]) between 30 and 65 �C. Conversion was found to occur faster when the temperature of the solid powder was greater than the T[c]. Under various storage conditions, similarly, crystallization of the amorphous phase mainly led to RAN form 2. However, some form 1 and amorphous phase was also detected on the XRPD diffractograms. Using partial least squares regression, the amount of solid form components in the ternary RAN mixtures were successfully quantified. RAN form 2 did not convert to form 1 under any milling (including cryo-milling) or storage conditions used in this study. Overall, RAN form 2 was found to be the thermodynamically stable form and the two (RAN) polymorphs are likely to be a monotropic pair. In a co-milling study of INDO and RAN, the two crystalline drugs were successfully converted into a single amorphous phase after 60 min of co-milling in a cold room (4 �C). The T[g] range (26-44 �C) was also characterized for these mixtures. DRIFTS spectra of the co-milled amorphous samples indicated an interaction had occurred between the carboxylic acid carbonyl (HO-C=O) and benzonyl amide (NC=O) of the INDO molecule with the aci-nitro (C=NO₂) of RAN. Depending on the ratio of INDO to RAN, in general, the amorphous mixtures were stable at 4 �C after 30 days of storage. Crystallization was faster when the binary mixtures were stored at higher temperature or contained higher amounts of RAN in the mixture. Although XRPD and DRIFTS suggested an interaction between the two drugs, co-crystal formation was not observed between INDO and RAN. Ball milling can be used to produce amorphous drug. The rate and extent of amorphization is dependent on the milling conditions. A faster rate of amorphization was observed when the crystalline drugs were cryo-milled. Amorphous drug formation can be made either alone or in combination with another crystalline drug. Amorphization could offer a significant improvement on the dissolution profile and the bioavailability of the poorly water soluble drug - indomethacin. Furthermore, ball milling can also be used to produce a homogenous mix between solids. The �goodmix� effect can be used for seed-induced crystallization or, when the XRPD or Raman data were combined with partial least squares regression, to create a reliable calibration model for quantitative analysis.
44

Hepatic and renal impairment trials : FDA guidance and industry practice /

Heller, Gillis L. January 2006 (has links)
Thesis (M.P.H.)--University of Hong Kong, 2007.
45

Bayesian approaches to problems in drug safety and adaptive clinical trial designs

Mauldin, Jo A. Seaman, John Weldon, January 2008 (has links)
Thesis (Ph.D.)--Baylor University, 2008. / Includes bibliographical references (p. 112-117).
46

Hepatic and renal impairment trials FDA guidance and industry practice /

Heller, Gillis L. January 2006 (has links)
Thesis (M. P. H.)--University of Hong Kong, 2007. / Also available in print.
47

Development of high throughput screening systems for the efficient production of antibody fragments in Escherichia coli

Seo, Min Jeong, 1979- January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
48

Development and in vitro evaluation of a clobetasol 17-propionate topical cream formulation /

Kasongo, Kasongo Wa. January 2007 (has links)
Thesis (M.Sc. (Pharmacy)) - Rhodes University, 2007.
49

Academia-industry collaboration in translational medicine

Davie, Natasha January 2016 (has links)
Collaboration between academia and industry has been the focus of numerous government reports and initiatives over the past 15 years, and is increasingly recognized as an effective way to capitalize on the UK's world-class research base. However, there is a need to further understand the role of such collaborations in the field of translational medicine, where the path to market is particularly lengthy, expensive, and risky, due to complexities associated with the clinical trial process. This research uses a mixed methods approach to investigate collaboration in translational medicine at the University of Oxford. The project comprises three principal stages. First, a broad understanding of the current landscape of academia-industry collaboration in translational medicine was obtained by administering a questionnaire to academics who had received industry funding. Next, a deeper understanding of the barriers to collaboration was sought through semi-structured interviews with 27 academics. Finally, potential strategies to reduce practical barriers to the collaboration process were investigated through interviews with members of three groups within the university who interact directly with industry: Research Services, Oxford University Innovation, and Business Development. This research constitutes the first empirical study on university-industry collaboration in translational research in the United Kingdom. It contributes to existing theory through the development of a new theoretical framework for the evaluation of barriers in terms of a) the practicalities of the collaboration process, b) the institutional environment and c) presiding cultures. Through these analyses, differences in experiences of barriers to collaboration emerged for clinical and non-clinical researchers. Furthermore, industry was seen as playing a crucial role in the translation of new therapeutics, especially in the funding of research that was perceived as being ‘too risky’ for Research Councils. Thus, reducing barriers to university-industry collaboration was seen as important to the realisation of public benefit from university research. Barriers were seen as being overcome, or avoided, via the formation of relationships between academics and companies at several different levels; while systems exist within the university to facilitate this, awareness and uptake of these systems was poor amongst the study population. Finally, if universities are to deliver impact as a key metric of performance, incentives within the university need to reward academics for commercialisation activities, in addition to publication. Through the suggestion of long and short-term strategies and a detailed analysis of industrial collaboration in this setting, this research has implications for both university and government policy.
50

Synthesis and evaluation of novel inhibitors of 1-Deoxy-D-xylolose-5-phosphate reductoisomerase as potential antimalarials

Conibear, Anne Claire 19 July 2013 (has links)
Malaria continues to be an enormous health-threat in the developing world and the emergence of drug resistance has further compounded the problem. The parasite-specific enzyme, 1-deoxY-D-xylulose-S-phosphate reductoisomerase (DXR), has recently been validated as a promising antimalarial drug target. The present study comprises a combination of synthetic, physical organic, computer modelling and bioassay techniques directed towards the development of novel DXR inhibitors. A range of 2-heteroarylamino-2-oxoethyl- and 2- heteroarylamino-2-oxopropyl phosphonate esters and their corresponding phosphonic acid salts have been synthesised as analogues of the highly active DXR inhibitor, fosmidomycin. Treatment of the heteroarylamino precursors with chloroacetyl chloride or chloropropionyl chloride afforded chloroamide intermediates, Arbuzov reactions of which led to the corresponding diethyl phosphonate esters. Hydrolysis of the esters has been effected using bromotrimethylsilane. Twenty-four new compounds have been prepared and fully characterised using elemental (HRMS or combustion) and spectroscopic (1- and 2-D NMR and IR) analysis. A 31p NMR kinetic study has been carried out on the two-step silylation reaction involved in the hydrolysis of the phosphonate esters and has provided activation parameters for the reaction. The kinetic analysis was refined using a computational method to give an improved fit with the experimental data. Saturation transfer difference (STD) NMR analysis, computer-simulated docking and enzyme inhibition assays have been used to evaluate the enzyme-binding and -inhibition potential of the synthesised ligands. Minimal to moderate inhibitory activity has been observed and several structure-activity relationships have been identified. In silica exploration of the DXR active site has revealed an additional binding pocket and information on the topology of the active site has led to the de novo design of a new series of potential ligands. / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in

Page generated in 0.0743 seconds