• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 7
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 53
  • 21
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chinese tradition and Western influences in Li Ang's fiction /

Ng, Sheung-yuen, Daisy. January 1989 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1990.
2

Das Kino des Ang Lee im Atem des verborgenen Drachen

Gössele, Isabell January 2008 (has links)
Zugl.: Mainz, Univ., Diss., 2008
3

Ligand-induced conformations of extracellular loop 2 of AT1R

Unal, Hamiyet 20 August 2010 (has links)
No description available.
4

Role of Circulating Angiotensin II in Activation of Aldosterone production in the Central Nervous System

Ahmadi, Sara 30 June 2011 (has links)
Elevated circulating Ang II activates neurons in the forebrain cardiovascular regulatory areas to cause sympatho-excitation and hypertension. We hypothesized that circulating Ang II causes neuronal activation in the SFO and thereby activates efferent pathways to the PVN, and chronically causes activation of aldosterone production in magnocellular neurons in PVN and SON, which amplifies neuronal activation in the PVN and central sympatho-excitatory pathways. The aim of the present study was to determine the pattern of neuronal activation in forebrain nuclei by circulating Ang II and to elucidate where in the hypothalamus Ang II may stimulate aldosterone biosynthesis. Dose related effects of circulating Ang II on BP were first assessed. Wistar rats instrumented with telemetry probes were infused subcutaneously with Ang II 150 and 500 ng/kg/min for 14 days. The subcutaneous infusion of Ang II at 150 ng/kg/min increased blood pressure gradually up to 20 mmHg and at 500 ng/kg/min up to 60 mmHg. Ang II at 500 ng/kg/min increased plasma Ang II by 4-fold. To assess effects of circulating Ang II on CNS pathways, Wistar rats were implanted subcutaneously with minipumps infusing 150 and 500 ng/kg/min Ang II for 1, 4 and 14 days. Three patterns of neuronal activation were observed by sc infusion of Ang II. The SFO was activated during the first day and remained activated for 4 days, but at 14 days showed diminished activation. MnPO did not show significant activation during the first day but, after several days the activation was high and then less by 14 days. Parvocellular PVN (pPVN), magnocellular PVN (mPVN) and SON showed an initial activation that increased over time. Chronic intracerebroventricular infusion of an aldosterone synthase inhibitor or a mineralocorticoid receptor (MR) blocker attenuated the increase in Fra expression in PVN but not SON, and prevented the decrease in SFO after 14 days infusion of Ang II. A significant increase in mRNA expression of steroidogenic acute regulatory protein (StAR), a rate limiting enzyme in aldosterone production was found in glia cells of PVN and SFO assessed by rt-PCR after 3 days subcutaneous infusion of Ang II at 500 ng/kg/min. Total expression of aldosterone synthase (CYP11B2) mRNA was increased in SFO, MnPO, SON and PVN after 3 days of infusion of Ang II. After 14 days no significant changes were observed in the expression of StAR or CYP11B2 mRNA. In comparison, in adrenal StAR mRNA expression increased after 3 days but no longer after 14 days. In contrast, CYP11B2 mRNA expression in adrenal increased after both 3 and 14 days of infusion. These findings may support our hypothesis that chronic elevation of circulating Ang II increases neuronal activity in CVOs, presumably leading to activation of the PVN and SON to induce an increase in aldosterone production in magnocelular PVN and SON. In the second phase activation of CVOs appears to diminish, but an aldosterone-dependent amplifying mechanisms, causes sustained activation of the PVN and thereby hypertension.
5

Cysteinyl leukotrienes dependent [Ca2+]i responses to Angiotensin II in rat cardiomyocytes and aortic smooth muscle cells

Liu, Pinggang 14 February 2005
Angiotensin II (Ang II) plays a very important role in regulating cardiac and vascular contraction and proliferation/hypertrophy via stimulation of AT1 receptors. A few studies have demonstrated that 5-lipoxygenase (5-LO) derived cysteinyl leukotrienes (CysLT) contribute to Ang II evoked tension responses in rat aortic rings. Whether CysLT would contribute to Ang II evoked Ca2+ mobilization in neonatal rat cardiomyocytes (NRC) and rat aortic smooth muscle cells (ASMC) has not been investigated. In the present study, using primary cultures of NRC and minimally passaged cultures of rat ASMC, an effort was made to address this key issue. The agonists evoked increase in cytosolic free calcium ([Ca2+]i) level was determined by fura-2 fluorescence measurement in NRC and ASMC. Total CysLT levels in the culture medium were determined using an ELISA kit. CysLT1/CysLT2 receptor mRNA levels of NRC and ASMC were quantified by Northern blot analysis. In NRC, the AT1 but not the AT2 selective antagonist, attenuated the elevations in [Ca2+]i and CysLT levels evoked by Ang II. Vasopressin (AVP) and endothelin-1 (ET-1) increased [Ca2+]i but not CysLT levels. The 5-LO inhibitor, AA861, and the CysLT1 selective antagonist, MK-571, reduced the maximal [Ca2+]i responses (Emax) to Ang II but not to AVP and ET-1. While CysLT1 antagonist reduced the Emax to leukotriene D4, (LTD4), the dual CysLT1/CysLT2 antagonist, BAY u9773, completely blocked the [Ca2+]i elevation to both LTD4 and leukotriene C4 (LTC4). Both CysLT1 and CysLT2 mRNA were detected in NRC. The inositol 1,4,5 triphosphate (InsP3) antagonist, 2-aminoethoxyphenyl borate (2-APB), attenuated the [Ca2+]i responses to Ang II and LTD4. In ASMC, Ang II, ET-1 and AVP evoked [Ca2+]i responses were significantly higher in the cultured ASMC isolated from spontaneously hypertensive rats (SHR) compared to ASMC derived from age-matched normotensive Wistar-Kyoto (WKY) strain. Addition of either MK571 or BAY u9773, reduced the Emax values to Ang II (but not to ET-1and AVP) in both strains. While BAY u9773 abolished the [Ca2+]i responses evoked by both LTD4 and LTC4, MK571, the CysLT1 antagonist reduced the responses evoked by LTD4 but not LTC4. The basal CysLT levels were higher in the ASMC of SHR. Ang II but not ET-1 and AVP evoked time and concentration dependent increases in CysLT levels in ASMC of both WKY and SHR strains. The AT1 selective antagonist, losartan, but not the AT2 antagonist, PD123319, attenuated the increases in [Ca2+]i and CysLT levels evoked by Ang II. The InsP3 antagonist, attenuated the [Ca2+]i responses to Ang II, LTD4 and LTC4. Both CysLT1 and CysLT2 mRNA were detected in the ASMC of either strain; but they were significantly higher in SHR. These data suggest that AT1 mediated CysLT production contributes to Ang II evoked Ca2+ mobilization in NRC and that elevated CysLT production along with increased expression of both CysLT1/CysLT2 receptors may account for the exaggerated [Ca2+]i responses to Ang II in ASMC of SHR due to enhanced mobilization of Ca2+ from InsP3 sensitive intracellular Ca2+ stores.
6

Role of Circulating Angiotensin II in Activation of Aldosterone production in the Central Nervous System

Ahmadi, Sara 30 June 2011 (has links)
Elevated circulating Ang II activates neurons in the forebrain cardiovascular regulatory areas to cause sympatho-excitation and hypertension. We hypothesized that circulating Ang II causes neuronal activation in the SFO and thereby activates efferent pathways to the PVN, and chronically causes activation of aldosterone production in magnocellular neurons in PVN and SON, which amplifies neuronal activation in the PVN and central sympatho-excitatory pathways. The aim of the present study was to determine the pattern of neuronal activation in forebrain nuclei by circulating Ang II and to elucidate where in the hypothalamus Ang II may stimulate aldosterone biosynthesis. Dose related effects of circulating Ang II on BP were first assessed. Wistar rats instrumented with telemetry probes were infused subcutaneously with Ang II 150 and 500 ng/kg/min for 14 days. The subcutaneous infusion of Ang II at 150 ng/kg/min increased blood pressure gradually up to 20 mmHg and at 500 ng/kg/min up to 60 mmHg. Ang II at 500 ng/kg/min increased plasma Ang II by 4-fold. To assess effects of circulating Ang II on CNS pathways, Wistar rats were implanted subcutaneously with minipumps infusing 150 and 500 ng/kg/min Ang II for 1, 4 and 14 days. Three patterns of neuronal activation were observed by sc infusion of Ang II. The SFO was activated during the first day and remained activated for 4 days, but at 14 days showed diminished activation. MnPO did not show significant activation during the first day but, after several days the activation was high and then less by 14 days. Parvocellular PVN (pPVN), magnocellular PVN (mPVN) and SON showed an initial activation that increased over time. Chronic intracerebroventricular infusion of an aldosterone synthase inhibitor or a mineralocorticoid receptor (MR) blocker attenuated the increase in Fra expression in PVN but not SON, and prevented the decrease in SFO after 14 days infusion of Ang II. A significant increase in mRNA expression of steroidogenic acute regulatory protein (StAR), a rate limiting enzyme in aldosterone production was found in glia cells of PVN and SFO assessed by rt-PCR after 3 days subcutaneous infusion of Ang II at 500 ng/kg/min. Total expression of aldosterone synthase (CYP11B2) mRNA was increased in SFO, MnPO, SON and PVN after 3 days of infusion of Ang II. After 14 days no significant changes were observed in the expression of StAR or CYP11B2 mRNA. In comparison, in adrenal StAR mRNA expression increased after 3 days but no longer after 14 days. In contrast, CYP11B2 mRNA expression in adrenal increased after both 3 and 14 days of infusion. These findings may support our hypothesis that chronic elevation of circulating Ang II increases neuronal activity in CVOs, presumably leading to activation of the PVN and SON to induce an increase in aldosterone production in magnocelular PVN and SON. In the second phase activation of CVOs appears to diminish, but an aldosterone-dependent amplifying mechanisms, causes sustained activation of the PVN and thereby hypertension.
7

Cysteinyl leukotrienes dependent [Ca2+]i responses to Angiotensin II in rat cardiomyocytes and aortic smooth muscle cells

Liu, Pinggang 14 February 2005 (has links)
Angiotensin II (Ang II) plays a very important role in regulating cardiac and vascular contraction and proliferation/hypertrophy via stimulation of AT1 receptors. A few studies have demonstrated that 5-lipoxygenase (5-LO) derived cysteinyl leukotrienes (CysLT) contribute to Ang II evoked tension responses in rat aortic rings. Whether CysLT would contribute to Ang II evoked Ca2+ mobilization in neonatal rat cardiomyocytes (NRC) and rat aortic smooth muscle cells (ASMC) has not been investigated. In the present study, using primary cultures of NRC and minimally passaged cultures of rat ASMC, an effort was made to address this key issue. The agonists evoked increase in cytosolic free calcium ([Ca2+]i) level was determined by fura-2 fluorescence measurement in NRC and ASMC. Total CysLT levels in the culture medium were determined using an ELISA kit. CysLT1/CysLT2 receptor mRNA levels of NRC and ASMC were quantified by Northern blot analysis. In NRC, the AT1 but not the AT2 selective antagonist, attenuated the elevations in [Ca2+]i and CysLT levels evoked by Ang II. Vasopressin (AVP) and endothelin-1 (ET-1) increased [Ca2+]i but not CysLT levels. The 5-LO inhibitor, AA861, and the CysLT1 selective antagonist, MK-571, reduced the maximal [Ca2+]i responses (Emax) to Ang II but not to AVP and ET-1. While CysLT1 antagonist reduced the Emax to leukotriene D4, (LTD4), the dual CysLT1/CysLT2 antagonist, BAY u9773, completely blocked the [Ca2+]i elevation to both LTD4 and leukotriene C4 (LTC4). Both CysLT1 and CysLT2 mRNA were detected in NRC. The inositol 1,4,5 triphosphate (InsP3) antagonist, 2-aminoethoxyphenyl borate (2-APB), attenuated the [Ca2+]i responses to Ang II and LTD4. In ASMC, Ang II, ET-1 and AVP evoked [Ca2+]i responses were significantly higher in the cultured ASMC isolated from spontaneously hypertensive rats (SHR) compared to ASMC derived from age-matched normotensive Wistar-Kyoto (WKY) strain. Addition of either MK571 or BAY u9773, reduced the Emax values to Ang II (but not to ET-1and AVP) in both strains. While BAY u9773 abolished the [Ca2+]i responses evoked by both LTD4 and LTC4, MK571, the CysLT1 antagonist reduced the responses evoked by LTD4 but not LTC4. The basal CysLT levels were higher in the ASMC of SHR. Ang II but not ET-1 and AVP evoked time and concentration dependent increases in CysLT levels in ASMC of both WKY and SHR strains. The AT1 selective antagonist, losartan, but not the AT2 antagonist, PD123319, attenuated the increases in [Ca2+]i and CysLT levels evoked by Ang II. The InsP3 antagonist, attenuated the [Ca2+]i responses to Ang II, LTD4 and LTC4. Both CysLT1 and CysLT2 mRNA were detected in the ASMC of either strain; but they were significantly higher in SHR. These data suggest that AT1 mediated CysLT production contributes to Ang II evoked Ca2+ mobilization in NRC and that elevated CysLT production along with increased expression of both CysLT1/CysLT2 receptors may account for the exaggerated [Ca2+]i responses to Ang II in ASMC of SHR due to enhanced mobilization of Ca2+ from InsP3 sensitive intracellular Ca2+ stores.
8

Angiogenesis and cardiovascular dysfunction in urbanised Africans : the PURE study / P.C. Venter

Venter, Paul Christiaan January 2008 (has links)
Argument: Hypertension is a main contributing risk factor to many cardiovascular diseases and may be the cause or the result of cardiovascular dysfunction. Black Africans, especially, suffer from hypertension because of lifestyle changes that occur during westernisation, which may lead to sympatho-adrenal hyperactivity. Vascular endothelial growth factor-A (VEGF-A) and angiopoietin-2 (Ang-2) are regulators of angiogenesis and are significantly up regulated during states of vascular dysfunction. Levels of angiogenic factors are unknown for African people and may not be the same as levels thus far reported for Caucasians. Aims: The aim of this study is firstly, to determine whether differences exist regarding the levels of VEGF-A and Ang-2 in urbanised compared to rural black Africans and secondly, to determine whether increased levels of VEGF-A and Ang-2 factors are related to hypertension in black Africans. Methodology: This is a sub study that is based upon the Prospective Urban and Rural Epidemiological (PURE) study. Apparently healthy, fasting African men and women (N=272, aged 35 to 50 years) from the North-West province of South Africa were selected by a medical doctor to participate in this study. Groups were stratified according to gender and urbanisation status based upon information derived from sociodemographic questionnaires. Cardiovascular parameters (Omron HEM-757), pulse wave velocity (PWV) (Compiler SP), plasma angiogenic factor levels (ELISA) and anthropometric measures were determined. An independent t-test and Pearson Chi-square test were used to compare urban and rural data, followed by an analysis of covariance (ANCOVA) while correcting for confounders (age, body mass index, physical activity and tobacco usage). ANCOVAs (corrected for confounders) were applied where hypertensive and normotensive groups were compared within the whole group and urbanised groups. Correlations, correcting for confounders, between cardiovascular variables and angiogenic factors were determined within the whole group and urbanised groups. Results and conclusion: Plasma VEGF-A values for all black Africans were very low while the ANG-2 levels were elevated compared to control values for Caucasians (normotensive and hypertensive) in literature. Urbanised men were more overweight and indicated a higher incidence of hypertension (42.47%) and elevated VEGF-A levels, but lower Ang-2 levels compared to rural men. Urbanised women were generally overweight, physically less active and smoked less, but indicated higher diastolic blood pressure (BP), VEGF-A levels and lower PWV compared with their rural counterparts. Ang-2 levels indicate a negative relationship to diastolic BP data in rural women. No relationships between hypertensive individuals and high angiogenic factor levels were uncovered. Conclusive evidence suggested that angiogenic factor levels were affected more by urbanisation than by the state of hypertension. If low levels of VEGF-2 occur, ANG-2 stimulation and properties may be altered, thereby switching ANG-2 from an anti-angiogenic to a pro-angiogenic molecule, inferring blood vessel destabilisation and vascular dysfunction, such as is observed in hypertensive urbanised men. Higher ANG-2 levels may result in Tie-2 receptor down regulation, hence causing VEGF-A levels to be lower. Further study is needed to ascertain this mechanism since Tie-2 receptor activity was not determined in this study. / Thesis (M.Sc. (Physiology))--North-West University, Potchefstroom Campus, 2009.
9

Role of Circulating Angiotensin II in Activation of Aldosterone production in the Central Nervous System

Ahmadi, Sara 30 June 2011 (has links)
Elevated circulating Ang II activates neurons in the forebrain cardiovascular regulatory areas to cause sympatho-excitation and hypertension. We hypothesized that circulating Ang II causes neuronal activation in the SFO and thereby activates efferent pathways to the PVN, and chronically causes activation of aldosterone production in magnocellular neurons in PVN and SON, which amplifies neuronal activation in the PVN and central sympatho-excitatory pathways. The aim of the present study was to determine the pattern of neuronal activation in forebrain nuclei by circulating Ang II and to elucidate where in the hypothalamus Ang II may stimulate aldosterone biosynthesis. Dose related effects of circulating Ang II on BP were first assessed. Wistar rats instrumented with telemetry probes were infused subcutaneously with Ang II 150 and 500 ng/kg/min for 14 days. The subcutaneous infusion of Ang II at 150 ng/kg/min increased blood pressure gradually up to 20 mmHg and at 500 ng/kg/min up to 60 mmHg. Ang II at 500 ng/kg/min increased plasma Ang II by 4-fold. To assess effects of circulating Ang II on CNS pathways, Wistar rats were implanted subcutaneously with minipumps infusing 150 and 500 ng/kg/min Ang II for 1, 4 and 14 days. Three patterns of neuronal activation were observed by sc infusion of Ang II. The SFO was activated during the first day and remained activated for 4 days, but at 14 days showed diminished activation. MnPO did not show significant activation during the first day but, after several days the activation was high and then less by 14 days. Parvocellular PVN (pPVN), magnocellular PVN (mPVN) and SON showed an initial activation that increased over time. Chronic intracerebroventricular infusion of an aldosterone synthase inhibitor or a mineralocorticoid receptor (MR) blocker attenuated the increase in Fra expression in PVN but not SON, and prevented the decrease in SFO after 14 days infusion of Ang II. A significant increase in mRNA expression of steroidogenic acute regulatory protein (StAR), a rate limiting enzyme in aldosterone production was found in glia cells of PVN and SFO assessed by rt-PCR after 3 days subcutaneous infusion of Ang II at 500 ng/kg/min. Total expression of aldosterone synthase (CYP11B2) mRNA was increased in SFO, MnPO, SON and PVN after 3 days of infusion of Ang II. After 14 days no significant changes were observed in the expression of StAR or CYP11B2 mRNA. In comparison, in adrenal StAR mRNA expression increased after 3 days but no longer after 14 days. In contrast, CYP11B2 mRNA expression in adrenal increased after both 3 and 14 days of infusion. These findings may support our hypothesis that chronic elevation of circulating Ang II increases neuronal activity in CVOs, presumably leading to activation of the PVN and SON to induce an increase in aldosterone production in magnocelular PVN and SON. In the second phase activation of CVOs appears to diminish, but an aldosterone-dependent amplifying mechanisms, causes sustained activation of the PVN and thereby hypertension.
10

Angiogenesis and cardiovascular dysfunction in urbanised Africans : the PURE study / P.C. Venter

Venter, Paul Christiaan January 2008 (has links)
Argument: Hypertension is a main contributing risk factor to many cardiovascular diseases and may be the cause or the result of cardiovascular dysfunction. Black Africans, especially, suffer from hypertension because of lifestyle changes that occur during westernisation, which may lead to sympatho-adrenal hyperactivity. Vascular endothelial growth factor-A (VEGF-A) and angiopoietin-2 (Ang-2) are regulators of angiogenesis and are significantly up regulated during states of vascular dysfunction. Levels of angiogenic factors are unknown for African people and may not be the same as levels thus far reported for Caucasians. Aims: The aim of this study is firstly, to determine whether differences exist regarding the levels of VEGF-A and Ang-2 in urbanised compared to rural black Africans and secondly, to determine whether increased levels of VEGF-A and Ang-2 factors are related to hypertension in black Africans. Methodology: This is a sub study that is based upon the Prospective Urban and Rural Epidemiological (PURE) study. Apparently healthy, fasting African men and women (N=272, aged 35 to 50 years) from the North-West province of South Africa were selected by a medical doctor to participate in this study. Groups were stratified according to gender and urbanisation status based upon information derived from sociodemographic questionnaires. Cardiovascular parameters (Omron HEM-757), pulse wave velocity (PWV) (Compiler SP), plasma angiogenic factor levels (ELISA) and anthropometric measures were determined. An independent t-test and Pearson Chi-square test were used to compare urban and rural data, followed by an analysis of covariance (ANCOVA) while correcting for confounders (age, body mass index, physical activity and tobacco usage). ANCOVAs (corrected for confounders) were applied where hypertensive and normotensive groups were compared within the whole group and urbanised groups. Correlations, correcting for confounders, between cardiovascular variables and angiogenic factors were determined within the whole group and urbanised groups. Results and conclusion: Plasma VEGF-A values for all black Africans were very low while the ANG-2 levels were elevated compared to control values for Caucasians (normotensive and hypertensive) in literature. Urbanised men were more overweight and indicated a higher incidence of hypertension (42.47%) and elevated VEGF-A levels, but lower Ang-2 levels compared to rural men. Urbanised women were generally overweight, physically less active and smoked less, but indicated higher diastolic blood pressure (BP), VEGF-A levels and lower PWV compared with their rural counterparts. Ang-2 levels indicate a negative relationship to diastolic BP data in rural women. No relationships between hypertensive individuals and high angiogenic factor levels were uncovered. Conclusive evidence suggested that angiogenic factor levels were affected more by urbanisation than by the state of hypertension. If low levels of VEGF-2 occur, ANG-2 stimulation and properties may be altered, thereby switching ANG-2 from an anti-angiogenic to a pro-angiogenic molecule, inferring blood vessel destabilisation and vascular dysfunction, such as is observed in hypertensive urbanised men. Higher ANG-2 levels may result in Tie-2 receptor down regulation, hence causing VEGF-A levels to be lower. Further study is needed to ascertain this mechanism since Tie-2 receptor activity was not determined in this study. / Thesis (M.Sc. (Physiology))--North-West University, Potchefstroom Campus, 2009.

Page generated in 0.0695 seconds