• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 17
  • 8
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

THE ROLE OF ANGIOTENSINOGEN IN ATHEROSCLEROSIS AND OBESITY

Wu, Congqing 01 January 2014 (has links)
Angiotensinogen is the only known precursor in the renin-angiotensin system, a hormonal system best known as an essential regulator of blood pressure and fluid homeostasis. Angiotensinogen is sequentially cleaved by renin and angiotensin- converting enzyme to generate angiotensin II. As the major effector peptide, angiotensin II mainly function through angiotensin type 1 receptor. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and more recently renin inhibitors are widely known as the 3 classic renin-angiotensin system inhibitory drugs against hypertension and atherosclerosis. Here, we developed an array of regents to explore the effects of angiotensinogen inhibition. First, we demonstrated that genetic deficiency of angiotensinogen not only protected against hypercholesterolemia- induced atherosclerosis but also prevented diet-induced obesity. Then we found weekly intraperitoneal injection of antisense oligonucleotides against angiotensinogen remarkably surpressed body weight gain in mice fed a western diet, which was absent from classic renin-angiotensin system inhibition. The suppressed body weight gain was attributable to diminished body fat mass gain and enhanced energy expenditure. More excitingly, angiotensinogen antisense oligonucleotides regressed body weight gain on obese mice. Together, our findings revealed a unique feature of angiotensinogen inhibition beyond classic renin angiotensin inhibition and demonstrated therapeutic potentials of angiotensinogen antisense oligonucleotides against hypertension, atherosclerosis, and obesity. We also developed an in vivo system to explore the functional consequences of disrupting a conserved Cys18-Cys137 disulfide bridge in angiotensinogen. The formation of this disulfide bridge could trigger conformational changes in angiotensinogen, thereby facilitating renin cleavage of angiotensinogen. It was predicted that the redox-sensitive disulfide bridge might change the efficiency of angiotensinogen/renin reaction to release angiotensin II, thus modulate angiotensin II-dependent functions. We determined effects of the presence and absence of the disulfide bridge on angiotensin II concentrations and responses in mice expressing either native angiotensinogen or Cys18Ser, Cys137Ser mutated angiotensinogen in liver via adeno-associated viral vectors. Contrary to the prediction, disruption of Cys18-Cys137 disulfide bridge in angiotensinogen had no discernible effects on angiotensin II production and angiotensin II-dependent functions in mice.
12

The Effect of Glucocorticoids on Regulation of the Human Angiotensinogen Gene and Blood Pressure

Pandey, Varunkumar Girijaprasad January 2013 (has links)
No description available.
13

Single Nucleotide Polymorphisms Linked to Essential Hypertension in Kasigau, Kenya

Freeman, Julia Carol 01 December 2013 (has links)
Hypertension, or high blood pressure (BP), is an ever-growing epidemic in the developing world. Understanding the genetics behind essential hypertension (EH), or hypertension with no known cause, is especially important. In this study, three single nucleotide polymorphisms (SNPs) known to be linked to an increase in susceptibility to EH were quantified from a cohort of Kenyans living in the Kasigau region. The SNPs are located in three genes that are part of the renin angiotensin system, the primary regulatory pathway in humans controlling BP. They include: AGT (rs699), AGTR1 (rs5186), and HSD11β2 (rs5479). Overall, by using a fluorescent-based RT-PCR technique, the genotype distribution of AGT (rs699) was 0.63 C/C, 0.34 C/T, and 0.03 T/T. When evaluated as normotensive, prehypertensive, Stage I, or Stage II categories the allele frequencies for f(C)= 0.77,0.85,0.81, 0.77, respectively, and demonstrated Hardy Weinberg Equilibrium (HWE) as assessed by Χ2, p < 0.05. The genotype distribution of AGTR1 (rs5186) was 0.96 A/A, 0.03 A/C, and 0.00 C/C and the genotype distribution of HSD11β2 (rs5479) was 0.46 A/A, 0.46 A/C, and 0.08 C/C. The majority of genotype frequencies for each SNP were in HWE, with the exception of the AGT (rs699) SNP found in the sublocation of Bughuta suggesting other evolutionary selective pressures may be at work in this subpopulation. The high prevalence of the susceptible C allele for AGT (rs699) likely implies it is a critical factor in the high prevalence of EH observed in this population.
14

Caracterização de um sistema renina-angiotensina local no tecido gengival de rato / Characterization of a local renin-angiotensin system in the rat gingival tissue

Akashi, Ana Eliza 28 March 2008 (has links)
O sistema renina-angiotensina (SRA) circulante é um sistema endócrino que promove a produção de angiotensina (Ang) II, a qual exerce seus efeitos pela interação com receptores específicos. O conceito clássico do SRA circulante está sendo modificado, pois tem sido demonstrada a existência de sistemas locais capazes de gerar angiotensinas de forma independente do SRA circulante em vários tecidos e órgãos. Trabalhos recentes sugerem a existência de alguns componentes do SRA em tecido gengival e fibroblastos gengivais de diferentes espécies. Porém, não são encontrados na literatura achados inequívocos sobre a presença de importantes componentes do SRA, tais como renina e angiotensinogênio, no tecido gengival de rato. Portanto, os objetivos do presente trabalho foram: 1) estudar a expressão e localização de componentes do SRA no tecido gengival de rato e 2) estudar in vitro a funcionalidade do SRA local em homogenato de tecido gengival de rato quanto à formação de Ang II e outros peptídeos vasoativos a partir de precursores de Ang II. Transcrição reversa seguida de reação em cadeia da polimerase (RTPCR) foi utilizada para avaliar a expressão de RNAm. Análise imunohistoquímica foi utilizada para detecção e localização de renina no tecido gengival de rato. Um método fluorimétrico padronizado com o tripeptídeo Hipuril-Histidina-Leucina (Hip-His-Leu) foi usado para medir a atividade da ECA em homogenatos de tecido gengival de rato. A técnica de cromatografia líqüida de alto desempenho (HPLC) foi usada para analisar os produtos formados após a incubação de homogenatos de tecido gengival de rato com Ang I ou tetradecapeptídeo substrato de renina (TDP). RT-PCR revelou a expressão de RNAm para renina, angiotensinogênio, ECA e receptores de Ang II (AT1a, AT1b e AT2) em tecido gengival; em fibroblastos cultivados de tecido gengival foi observada expressão de RNAm para renina, angiotensinogênio e receptor AT1a. A técnica de imunohistoquímica demonstrou a existência de renina em vasos de tecido gengival de rato. Atividade da ECA foi detectada por meio do ensaio fluorimétrico (4,95±0,89 nmol His-Leu/g.min). Quando Ang I foi usada como substrato, análises de HPLC mostraram a formação de Ang 1-9 (0,576±0,128 nmol/mg.min), Ang II (0,066±0,008 nmol/mg.min) e Ang 1-7 (0,111±0,017 nmol/mg.min), enquanto que os mesmos peptídeos (0,139±0,031; 0,206±0,046 e 0,039±0,007 nmol/mg.min, respectivamente) e Ang I (0,973±0,139 nmol/mg.min) foram formados quando TDP foi usado como substrato. Adicionalmente, análises de HPLC revelaram a ausência de enzimas que degradam Ang II em homogenatos de tecido gengival de rato. Em conclusão, os resultados apresentados neste trabalho mostram claramente a existência de um SRA local em tecido gengival de rato, que é capaz de gerar Ang II e outros peptídeos vasoativos in vitro. Estudos adicionais são necessários para elucidar o papel deste sistema local no tecido gengival de rato. / Systemic renin-angiotensin system (RAS) promotes the plasmatic production of angiotensin (Ang) II, which acts through the interaction with specific receptors. The concept of this classic circulating RAS has been modified since there is growing evidence that local systems in various tissues and organs are capable of generating angiotensins independently of the circulating RAS. Recent works suggest the existence of some RAS components in the gingival tissue and cultured gingival fibroblasts of different species, but there is paucity of data in the literature regarding the unequivocal existence of crucial RAS components, such as renin and angiotensinogen, in the rat gingival tissue. Therefore, the aims of the present work were to: 1) study the expression and localization of RAS components in the rat gingival tissue and 2) evaluate the in vitro production of Ang II and other peptides catalyzed by rat gingival tissue homogenates incubated with different precursors of Ang II. Reverse transcription-polymerase chain reaction (RT-PCR) was used to assess mRNA expression. Immunohistochemical (IHC) analysis aimed to detect and localize renin in the rat gingival tissue. A standardized fluorimetric method with the tripeptide Hippuryl-Histidyl-Leucine (Hip-His-Leu) was used to measure tissue ACE activity in rat gingival tissue homogenates. High performance liquid chromatography (HLPC) was used to analyze the products formed after the incubation of rat gingival tissue homogenates with Ang I or tetradecapeptide renin substrate (TDP). RT-PCR revealed the mRNA expression for renin, angiotensinogen, ACE and Ang II receptors (AT1a, AT1b and AT2) in the rat gingival tissue; cultured gingival fibroblasts expressed renin, angiotensinogen and AT1a receptor. IHC demonstrated the existence of renin in vessels of the rat gingival tissue. ACE activity was detected by the fluorimetric assay (4.95±0.89 nmol His-Leu/g.min). When Ang I was used as the substrate, HPLC analyses showed the formation of Ang 1-9 (0.576±0.128 nmol/mg.min), Ang II (0.066±0.008 nmol/mg.min) and Ang 1-7 (0.111±0.017 nmol/mg.min) whereas these same peptides (0.139±0.031; 0.206±0.046 and 0.039±0.007 nmol/mg.min, respectively) and Ang I (0.973±0.139 nmol/mg.min) were formed when TDP was the substrate. Additionally, HPLC revealed absence of Ang II degrading enzymes in rat gingival tissue homogenates. In conclusion, the results presented here clearly show the existence of a local RAS in the rat gingival tissue, which is capable of generating Ang II and other vasoactive peptides in vitro. Further studies are required to elucidate the role of this system in the rat gingival tissue.
15

Caracterização de um sistema renina-angiotensina local no tecido gengival de rato / Characterization of a local renin-angiotensin system in the rat gingival tissue

Ana Eliza Akashi 28 March 2008 (has links)
O sistema renina-angiotensina (SRA) circulante é um sistema endócrino que promove a produção de angiotensina (Ang) II, a qual exerce seus efeitos pela interação com receptores específicos. O conceito clássico do SRA circulante está sendo modificado, pois tem sido demonstrada a existência de sistemas locais capazes de gerar angiotensinas de forma independente do SRA circulante em vários tecidos e órgãos. Trabalhos recentes sugerem a existência de alguns componentes do SRA em tecido gengival e fibroblastos gengivais de diferentes espécies. Porém, não são encontrados na literatura achados inequívocos sobre a presença de importantes componentes do SRA, tais como renina e angiotensinogênio, no tecido gengival de rato. Portanto, os objetivos do presente trabalho foram: 1) estudar a expressão e localização de componentes do SRA no tecido gengival de rato e 2) estudar in vitro a funcionalidade do SRA local em homogenato de tecido gengival de rato quanto à formação de Ang II e outros peptídeos vasoativos a partir de precursores de Ang II. Transcrição reversa seguida de reação em cadeia da polimerase (RTPCR) foi utilizada para avaliar a expressão de RNAm. Análise imunohistoquímica foi utilizada para detecção e localização de renina no tecido gengival de rato. Um método fluorimétrico padronizado com o tripeptídeo Hipuril-Histidina-Leucina (Hip-His-Leu) foi usado para medir a atividade da ECA em homogenatos de tecido gengival de rato. A técnica de cromatografia líqüida de alto desempenho (HPLC) foi usada para analisar os produtos formados após a incubação de homogenatos de tecido gengival de rato com Ang I ou tetradecapeptídeo substrato de renina (TDP). RT-PCR revelou a expressão de RNAm para renina, angiotensinogênio, ECA e receptores de Ang II (AT1a, AT1b e AT2) em tecido gengival; em fibroblastos cultivados de tecido gengival foi observada expressão de RNAm para renina, angiotensinogênio e receptor AT1a. A técnica de imunohistoquímica demonstrou a existência de renina em vasos de tecido gengival de rato. Atividade da ECA foi detectada por meio do ensaio fluorimétrico (4,95±0,89 nmol His-Leu/g.min). Quando Ang I foi usada como substrato, análises de HPLC mostraram a formação de Ang 1-9 (0,576±0,128 nmol/mg.min), Ang II (0,066±0,008 nmol/mg.min) e Ang 1-7 (0,111±0,017 nmol/mg.min), enquanto que os mesmos peptídeos (0,139±0,031; 0,206±0,046 e 0,039±0,007 nmol/mg.min, respectivamente) e Ang I (0,973±0,139 nmol/mg.min) foram formados quando TDP foi usado como substrato. Adicionalmente, análises de HPLC revelaram a ausência de enzimas que degradam Ang II em homogenatos de tecido gengival de rato. Em conclusão, os resultados apresentados neste trabalho mostram claramente a existência de um SRA local em tecido gengival de rato, que é capaz de gerar Ang II e outros peptídeos vasoativos in vitro. Estudos adicionais são necessários para elucidar o papel deste sistema local no tecido gengival de rato. / Systemic renin-angiotensin system (RAS) promotes the plasmatic production of angiotensin (Ang) II, which acts through the interaction with specific receptors. The concept of this classic circulating RAS has been modified since there is growing evidence that local systems in various tissues and organs are capable of generating angiotensins independently of the circulating RAS. Recent works suggest the existence of some RAS components in the gingival tissue and cultured gingival fibroblasts of different species, but there is paucity of data in the literature regarding the unequivocal existence of crucial RAS components, such as renin and angiotensinogen, in the rat gingival tissue. Therefore, the aims of the present work were to: 1) study the expression and localization of RAS components in the rat gingival tissue and 2) evaluate the in vitro production of Ang II and other peptides catalyzed by rat gingival tissue homogenates incubated with different precursors of Ang II. Reverse transcription-polymerase chain reaction (RT-PCR) was used to assess mRNA expression. Immunohistochemical (IHC) analysis aimed to detect and localize renin in the rat gingival tissue. A standardized fluorimetric method with the tripeptide Hippuryl-Histidyl-Leucine (Hip-His-Leu) was used to measure tissue ACE activity in rat gingival tissue homogenates. High performance liquid chromatography (HLPC) was used to analyze the products formed after the incubation of rat gingival tissue homogenates with Ang I or tetradecapeptide renin substrate (TDP). RT-PCR revealed the mRNA expression for renin, angiotensinogen, ACE and Ang II receptors (AT1a, AT1b and AT2) in the rat gingival tissue; cultured gingival fibroblasts expressed renin, angiotensinogen and AT1a receptor. IHC demonstrated the existence of renin in vessels of the rat gingival tissue. ACE activity was detected by the fluorimetric assay (4.95±0.89 nmol His-Leu/g.min). When Ang I was used as the substrate, HPLC analyses showed the formation of Ang 1-9 (0.576±0.128 nmol/mg.min), Ang II (0.066±0.008 nmol/mg.min) and Ang 1-7 (0.111±0.017 nmol/mg.min) whereas these same peptides (0.139±0.031; 0.206±0.046 and 0.039±0.007 nmol/mg.min, respectively) and Ang I (0.973±0.139 nmol/mg.min) were formed when TDP was the substrate. Additionally, HPLC revealed absence of Ang II degrading enzymes in rat gingival tissue homogenates. In conclusion, the results presented here clearly show the existence of a local RAS in the rat gingival tissue, which is capable of generating Ang II and other vasoactive peptides in vitro. Further studies are required to elucidate the role of this system in the rat gingival tissue.
16

Hypertension et régulation de l'expression moléculaire de l'angiotensinogène par la ribonucléoprotéine hétérogène nucléaire K

Abdo, Shaaban 06 1900 (has links)
Le diabète est une maladie chronique dont la principale caractéristique est un niveau plasmatique élevé de glucose, qui est causé soit par un défaut dans la production d’insuline, l’action de l’insuline, ou les deux à la fois. Plusieurs études ont démontré que l’hyperglycémie chronique peut mener à la dysfonction et même la défaillance de plusieurs organes, dont le coeur, le système vasculaire, les yeux et les reins, se traduisant par des infarctus du myocarde, des accidents cérébro-vasculaires et des complications rétinales et rénales, respectivement. La néphropathie diabétique (DN) est la principale cause de déficience rénale et affecte près de 25-40% des patients diabétiques. La DN est invariablement associée à un risque élevé d’accident cérébrovasculaire et de dysfonction cardivasculaire. L’angiotensinogène (Agt) est l’unique précurseur de tous les types d’angiotensines. En plus du système rénine-angiotensine (RAS) sytémique, le rein possède son propre système intrarénal et exprime tous les composants du RAS. L’Agt est fortement exprimé dans les cellules du tubule proximal rénal (RPTC) et y est converti en angiotensine II (AngII), le peptide biologiquement actif du RAS. Les patients diabétiques présentent de hauts niveaux d’AngII et une augmentation de l’expression des gènes du RAS, suggérant que l’activation du RAS intrarénal joue un rôle important dans la progression de la DN. Les mécanismes qui contrôlent la régulation du niveau rénal d’Agt par l’hyperglycémie et l’insuline demeurent mal compris. Le but global de cette thèse est de mieux comprendre les mécanismes moléculaires qui contrôlent l’expression du gène Agt chez la souris Akita (un modèle murin de diabète de type 1). Dans cette optique, la première partie de la thèse se concentre sur deux facteurs de transcription de la famille des ribonucléoprotéines nucléaires hétérogènes (hnRNP). Chan et collaborateurs ont déjà identifié 2 protéines nucléaires hnRNP F et hnRNP K, de 48kD et 70kD respectivement. HnRNP F et hnRNP K forment un hétérodimère et se lient à l’élément de réponse à l’insuline (IRE) présent dans le promoteur du gène Agt du rat et inhibent la transcription du gène Agt in vitro. Afin de déterminer si hnRNP F / K sont responsables de l’inhibition de l’expression rénale de Agt par l’insuline in vivo, nous avons étudié des souris Akita males traités ou non avec des implants d’insuline pour une période de 4 semaines. Des souris non-Akita males ont été employées comme contrôles. Les souris Akita développent de l’hypertension et de l’hypertrophie rénale. Le traitement à l’insuline rétablit les niveaux de glucose plasmatiques et la pression systolique (SBP), et atténue l’hypertrophie rénale, l’albuminurie (ratio albumine/créatinine urinaire, ACR) et les niveaux urinaires d’Agt et AngII chez les souris Akita. De plus, le traitement à l’insuline inhibe l’expression rénale du gène Agt, tout en augmentant l’expression des gènes hnRNP F, hnRNP K et ACE2 (enzyme de conversion de l’angiotensine-2). Dans des RPTC in vitro, l’insuline inhibe Agt, mais stimule l’expression de hnRNP F et hnRNP K en présence de hautes concentrations de glucose, et ce via la voie de signalisation MAPK p44/42 (protéine kinase activée par un mitogène). La transfection avec des petits ARN interférents (siRNA) contre hnRNP F et hnRNP K prévient l’inhibition de l’expression d’Agt par l’insuline dans les RPTC. Cette étude démontre bien que l’insuline prévient l’hypertension et atténue les dommages rénaux observés chez les souris Akita diabétiques, en partie grâce à la suppression de la transcription rénale de Agt, via une augmentation de l’expression de hnRNP F et hnRNP K. La seconde partie de cette thèse change de focus et se tourne vers le facteur Nrf2 (nuclear factor erythroid 2-related factor 2). Nrf2 est un facteur de transcription qui contrôle les gènes de la réponse antioxydante cellulaire en réponse au stress oxydant ou aux électrophiles. Le but de cette étude est d’examiner l’impact de la surexpression de la catalase (Cat) dans les RPTC sur l’expression du gène Agt via Nrf2 et sur le développement de l’hypertension et des dommages rénaux résultants chez les souris diabétiques Akita transgéniques (Tg). Nos études ont démontré que la surexpression de Cat dans les souris Akita Cat-Tg normalise la SBP, atténue les dommages rénaux et inhibe l’expression des gènes Nrf2 et Agt dans les RPTC. In vitro, le glucose élevé (HG) et l’oltipraz (un activateur de Nrf2) stimulent l’expression de Nrf2 et Agt, et cet effet peut être bloqué par la trigonelline (inhibiteur de Nrf2), des siRNA contre Nrf2, des antioxydants ou des inhibiteurs pharmacologiques NF-κB et MAPK p38. La suppression de sites de réponse à Nrf2 présents dans le promoteur du gène Agt du rat abolit la stimulation par l’oltipraz. Finalement, des souris males adultes non-transgéniques traitées avec l’oltipraz montrent une augmentation de l’expression de Nrf2 et Agt dans leurs RPTC et cette augmentation peut être normalisée par la trigonelline. Ces données permettent d’identifier un nouveau mécanisme d’action de Nrf2, par la stimulation du gène Agt intrarénal et l’activation du RAS, qui induisent l’hypertension et les dommages rénaux par le glucose élevé et les espèces réactives de l’oxygène chez les souris diabétiques. Nos conclusions permettent de démontrer que l’insuline induit l’expression de hnRNP F et hnRNP K, qui jouent ensuite un rôle protecteur en prévenant l’hypertension. La surexpression de la catalase dans les RPTC vient quant à elle atténuer l’activation de Nrf2 et ainsi réduit la SBP chez les souris Akita. / Diabetes mellitus is a chronic metabolic disorder characterized by high plasma glucose caused by an impairment of insulin production, insulin action or both. Accumulating evidence has shown that chronic hyperglycemia can lead to dysfunction and failure of multiple organs including the heart, vascular system, eyes, and kidneys resulting in myocardial infarction, stroke, and retinal and renal complications, respectively. Diabetic nephropathy (DN) is the leading cause of end-stage renal disease affecting approximately 25–40% of diabetic patients. DN is invariably associated with an increased risk of stroke and cardiovascular dysfunction. Angiotensinogen (Agt) is the sole precursor for all types of angiotensins. In addition to systemic renin-angiotensin system (RAS), all the components of the intrarenal RAS are expressed in the kidney. Agt is highly expressed in the renal proximal tubular cells (RPTCs) and converted into biologically active angiotensin II (Ang II). In Diabetics, intrarenal Ang II level and RAS gene expression are upregulated, suggesting that intrarenal RAS activation plays an important role in the progression of DN. The mechanism (s) underlying the regulation of renal Agt by hyperglycemia and insulin are not completely understood. The overall aim of this thesis is to understand the molecular mechanism(s) that regulate renal Agt gene expression in an Akita mouse (a mouse model of type 1 diabetes). For this purpose, the first part of this thesis focuses on two transcription factors from the heterogenous nuclear ribonucleoprotein (hnRNPs) family. Previously, Chan’s group identified two nuclear proteins hnRNP F and hnRNP K of 48kD and 70kD, respectively. hnRNP F and hnRNP K form a heterodimer and bind to the insulin-responsive element (IRE) in the rat Agt gene promoter inhibiting Agt gene transcription in vitro. To determine whether hnRNP F / K mediate insulin inhibition of renal Agt expression in vivo, we used adult male Akita mice treated ± insulin implants for 4 weeks. Non-Akita mice served as controls. The Akita mice developed hypertension and exhibited renal hypertrophy. Insulin treatment normalized plasma glucose levels and systolic blood pressure (SBP), attenuated renal hypertrophy, decreased urinary albumin/creatinine ratio (ACR) and urinary Agt and Ang II levels in Akita mice. Furthermore, insulin treatment inhibited renal Agt expression but enhanced hnRNP F, hnRNP K and angiotensinconverting enzyme-2 (ACE2) expression. In vitro, insulin inhibited Agt but stimulated hnRNP F and hnRNP K expression in high-glucose media via p44/42 mitogen-activated protein kinase signaling in RPTCs. Transfection with hnRNP F and hnRNP K small interfering RNAs (siRNA) prevented the insulin inhibition of Agt expression in RPTCs. This study demonstrates that insulin prevents hypertension and attenuates kidney injury, at least in part, through suppressing renal Agt transcription via upregulation of hnRNP F and hnRNP K expression in diabetic Akita mice. In the second part of the thesis we focused on the nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates cellular antioxidant gene defense against oxidative stress or electrophiles. The purpose of this study is to investigate the impact of the overexpressing catalase (Cat) in RPTCs on Agt gene expression via Nrf2and the resulting effects on the development of hypertension and renal injury in diabetic Akita transgenic (Tg) mice. Our studies demonstrate that Cat overexpression normalizes SBP, attenuates renal injury, and inhibits RPTC Nrf2 and Agt gene expression in the Akita Cat- Tg compared to Akita mice. In vitro, high glucose (HG) and Oltipraz stimulated Nrf2 and Agt gene expression; these changes were blocked by Trigonelline (an inhibitor of Nrf2), siRNA against Nrf2, antioxidants, or pharmacological inhibitors of NF-kB and p38 mitogen-activated protein kinase. Moreover, deletion of Nrf2-responsive elements in the rat Agt gene promoter abolishes the stimulatory effect of Oltipraz. Finally,non transgenic adult male mice treated with the Nrf2 activator Oltipraz, upregulated Nrf2 and Agt expression in mouse RPTs, an effect that was normalized by Trigonelline. These data identify a novel mechanism via which Nrf2 mediates the stimulation of intrarenal Agt gene expression and activates the RAS through whichHG/reactive oxygen species (ROS) induce hypertension and renal injury in diabetic mice. Our findings demonstrate that the insulin induced hnRNP F and hnRNP K gene expression play a protective role in the preventing hypertension. Catalase overexpression, in RPT's, attenuates Nrf2 activation and lowers the SBP in Akita mice.
17

Mécanisme(s) d'action de l'insuline dans la prévention de l'hypertension et la progression de la tubulopathie dans le diabète : rôle de hnRNP F, Nrf2 et Bmf

Ghosh, Anindya 08 1900 (has links)
No description available.

Page generated in 0.0881 seconds