• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 43
  • 43
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Enhancement of precise underwater object localization

Kaveripakum, S., Chinthaginjala, R., Anbazhagan, R., Alibakhshikenari, M., Virdee, B., Khan, S., Pau, G., See, C.H., Dayoub, I., Livreri, P., Abd-Alhameed, Raed 24 July 2023 (has links)
Yes / Underwater communication applications extensively use localization services for object identification. Because of their significant impact on ocean exploration and monitoring, underwater wireless sensor networks (UWSN) are becoming increasingly popular, and acoustic communications have largely overtaken radio frequency (RF) broadcasts as the dominant means of communication. The two localization methods that are most frequently employed are those that estimate the angle of arrival (AOA) and the time difference of arrival (TDoA). The military and civilian sectors rely heavily on UWSN for object identification in the underwater environment. As a result, there is a need in UWSN for an accurate localization technique that accounts for dynamic nature of the underwater environment. Time and position data are the two key parameters to accurately define the position of an object. Moreover, due to climate change there is now a need to constrain energy consumption by UWSN to limit carbon emission to meet net-zero target by 2050. To meet these challenges, we have developed an efficient localization algorithm for determining an object position based on the angle and distance of arrival of beacon signals. We have considered the factors like sensor nodes not being in time sync with each other and the fact that the speed of sound varies in water. Our simulation results show that the proposed approach can achieve great localization accuracy while accounting for temporal synchronization inaccuracies. When compared to existing localization approaches, the mean estimation error (MEE) and energy consumption figures, the proposed approach outperforms them. The MEEs is shown to vary between 84.2154m and 93.8275m for four trials, 61.2256m and 92.7956m for eight trials, and 42.6584m and 119.5228m for twelve trials. Comparatively, the distance-based measurements show higher accuracy than the angle-based measurements.
12

Phased Array Digital Beamforming Algorithms and Applications

Marsh, David Moyle 01 June 2019 (has links)
With the expansion of unmanned aircraft system (UAS) technologies, there is a growing need for UAS Traffic Management (UTM) systems to promote safe operation and development. To be successful, these UTM systems must be able to detect and track multiple drones in the presence of clutter. This paper examines the implementation of different algorithms on a compact, X-band, frequency modulated continuous wave (FMCW) radar in an effort to enable more accurate detection and estimation of drones. Several algorithms were tested through post processing on actual radar data to determine their accuracy and usefulness for this system. A promising result was achieved through the application of pulse-Doppler processing. Post processing on recorded radar data showed that a moving target indicator successfully separated a target from clutter. An improvement was also noted for the implementation of phase comparison monopulse which accurately estimated angle of arrival (AOA) and required fewer computations than digital beamforming.The second part of this thesis explains the work done on an adaptive broadband, real time beamformer for RF interference (RFI) mitigation. An effective communication system is reliable and can counteract the effects of jamming. Beamforming is an appropriate solution to RFI. To assist in this process FPGA firmware was developed to prepare signals for frequency domain beamforming. This system allows beamforming to be applied to 150 MHz of bandwidth. Future implementation will allow for signal reconstruction after beamforming and demodulation of a communication signal.
13

Low Cost Lightweight Mode Forming System for Angle of Arrival Estimation

Stewart, Mark Anthony 26 May 2009 (has links)
No description available.
14

Effect of the bandwidth on the accuracy of AOA estimation algorithms in a multipath environment

Ghazaany, Tahereh S., Zhu, Shaozhen (Sharon), Jones, Steven M.R., Abd-Alhameed, Raed, Noras, James M., Van Buren, T., Suggett, T., Marker, S. January 2014 (has links)
No / This paper investigates the effect of channel bandwidth on the accuracy of AOA estimation algorithms based on the detection of the direct path. The accurate detection of the Line of Sight (LOS) signal in a multipath environment is crucial for reliable direction finding. In this work, the estimation algorithms are applied to the LOS component in the time domain channel impulse response which is acquired by applying the inverse Fourier transform to the simulated channel transfer function in the desired bandwidth. Different channel bandwidths as well as two AOA estimation methods have been considered in the modelling to investigate the performance of the standard deviation of angle estimation error. It has been shown that increasing the bandwidth in all simulated channel scenarios improves the estimation accuracy. / Seven Technologies Group, KTP project grant No. 008734.
15

[en] SPACE-TIME CHARACTERIZATION OF THE MOBILE RADIO CHANNEL / [pt] CARACTERIZAÇÃO ESPAÇO-TEMPORAL DO CANAL RÁDIO MÓVEL

JANAINA FERREIRA MACEDO 21 May 2003 (has links)
[pt] Este trabalho apresenta os resultados da investigação da utilização da Técnica de Sondagem em Frequência na estimação de dispersividade Espaço-Temporal do Canal Rádio Móvel. Modifcações na técnica clássica de varredura em frequência foram implementadas: um conjunto de antenas denominado array foi construído e calibrado e um algoritmo de pós-processamento do sinal medido foi testado. Foi realizada uma campanha de medidas em três ambientes diferentes para averiguar a aplicabilidade do conjunto. Foram obtidos bons resultados, demonstrando a efciência da metodologia de medidas aplicada. / [en] This work presents the results of an investigation of the use of the Frequency Sounding technique in Mobile Radio Channel`s Space-Time Dispersion characterization. Hence, some changes in the classical Frequency Sounding Technique were employed: a set of antennas was built and calibrated and an algorithm for signal pos processing was tested. A measurement campaign was carried out on three different environments to test the applicability of the set as a whole. Very good results showed the efficiency of the measurements methodology applied.
16

Direction Finding With Tdoa In A Multipath Land Environment

Basciftci, Cagri Halis 01 September 2007 (has links) (PDF)
In this thesis, the problem of Angle of Arrival estimation of radar signals with Time Difference of Arrival method in an outdoor land multipath environment with limited line of sight is analyzed. A system model is proposed. Effects of system, channel and radar parameters on the Angle of Arrival estimation performance are investigated through Monte Carlo simulations. Improving effect of utilization of diversity on the estimation performance is observed. Performances of the space diversity with noncoherent and selective combining are compared. Finally a realistic scenario is studied and performance of the proposed system is investigated.
17

AOA localization for vehicle-tracking systems using a dual-band sensor array

Al-Sadoon, Mohammed A.G., Asif, Rameez, Al-Yasir, Yasir I.A., Abd-Alhameed, Raed, Excell, Peter S. 10 January 2021 (has links)
Yes / The issue of asset tracking in dense environments where the performance of the global positioning system (GPS) becomes unavailable or unreliable is addressed. The proposed solution uses a low-profile array of antenna elements (sensors) mounted on a finite conducting ground. A compact-size sensor array of six electrically small dual-band omnidirectional spiral antenna elements was designed as a front end of a tracker to operate in the 402 and 837 MHz spectrum bands. For the lower band, a three-element superposition method is applied to support estimation of the angle of arrival (AOA), whereas all six sensors are employed for the higher band. A low complexity and accurate AOA determination algorithm is proposed, the projection vector (PV), and this is combined with the array mentioned. Orthogonal frequency division multiplexing (OFDM) is integrated with the PV technique to increase the estimation resolution. The system was found to be suitable for installation on the roof of vehicles to localize the position of assets. The proposed system was tested for the tracking of nonstationary sources, and then two scenarios were investigated using propagation modeling software: outdoor to outdoor and outdoor to indoor. The results confirm that the proposed tracking system works efficiently with a single snapshot. / European Union Horizon 2020 Research and Innovation Program; 10.13039/501100009928 - Higher Committee for Education Development (HCED), Iraq
18

Direction of Arrival Estimation using Wideband Spectral Subspace Projection

Shaik, Majid January 2015 (has links)
No description available.
19

A self calibration technique for a DOA array in the presence of mutual coupling and resonant scatterers

Horiki, Yasutaka 22 September 2006 (has links)
No description available.
20

Angle of Arrival Estimation Using Spectral Interferometry and a Photonic Link

Andrew J Putlock (18436287) 29 April 2024 (has links)
<p dir="ltr">Accurately locating a radio-frequency (RF) emitter is imperative in the defense sector, and passive direction finding systems are intriguing due to relatively low cost. This approach involves using the time difference between a signal’s impact at equispaced antennas to determine the location of the emitter, a particular challenge for wideband waveforms operating near the noise floor. Microwave photonic systems have been demonstrated for passive direction finding. These techniques possessed drawbacks, such as reliance on the incoming signal’s bandwidth, dependence on laser power, or the inability to recover an angle from wideband pulses. This thesis presents a novel approach to passive direction finding by translating the methods of spectral interferometry from the optical domain to RF. Spectral interferometry involves interfering a time-delayed reference pulse with a “signal” pulse that has passed through an unknown system. By removing the spectral phase of the reference pulse from the resulting interferogram, the spectral phase of the uncharacterized system is recovered. This enables direction-finding for many waveforms, including the wideband low peak power chirps frequently used in radar. Incorporating an analog optical delay line into both a hard-wired RF interferometer and a two-element antenna array demonstrated spectral interferometric processing of chirped signals with up to 1 GHz instantaneous bandwidth. The technique extracted accurate delays and angles to within 2$\degree$ throughout testing. This approach only requires the imposed delay be longer than the autocorrelation of the bandwidth limited pulses. With additional backend processing, this method could simultaneously determine the angle and classify the incoming signal.</p>

Page generated in 0.0604 seconds