Spelling suggestions: "subject:"angle off arrival"" "subject:"angle oof arrival""
11 |
Phased Array Digital Beamforming Algorithms and ApplicationsMarsh, David Moyle 01 June 2019 (has links)
With the expansion of unmanned aircraft system (UAS) technologies, there is a growing need for UAS Traffic Management (UTM) systems to promote safe operation and development. To be successful, these UTM systems must be able to detect and track multiple drones in the presence of clutter. This paper examines the implementation of different algorithms on a compact, X-band, frequency modulated continuous wave (FMCW) radar in an effort to enable more accurate detection and estimation of drones. Several algorithms were tested through post processing on actual radar data to determine their accuracy and usefulness for this system. A promising result was achieved through the application of pulse-Doppler processing. Post processing on recorded radar data showed that a moving target indicator successfully separated a target from clutter. An improvement was also noted for the implementation of phase comparison monopulse which accurately estimated angle of arrival (AOA) and required fewer computations than digital beamforming.The second part of this thesis explains the work done on an adaptive broadband, real time beamformer for RF interference (RFI) mitigation. An effective communication system is reliable and can counteract the effects of jamming. Beamforming is an appropriate solution to RFI. To assist in this process FPGA firmware was developed to prepare signals for frequency domain beamforming. This system allows beamforming to be applied to 150 MHz of bandwidth. Future implementation will allow for signal reconstruction after beamforming and demodulation of a communication signal.
|
12 |
Low Cost Lightweight Mode Forming System for Angle of Arrival EstimationStewart, Mark Anthony 26 May 2009 (has links)
No description available.
|
13 |
Effect of the bandwidth on the accuracy of AOA estimation algorithms in a multipath environmentGhazaany, Tahereh S., Zhu, Shaozhen (Sharon), Jones, Steven M.R., Abd-Alhameed, Raed, Noras, James M., Van Buren, T., Suggett, T., Marker, S. January 2014 (has links)
No / This paper investigates the effect of channel bandwidth on the accuracy of AOA estimation algorithms based on the detection of the direct path. The accurate detection of the Line of Sight (LOS) signal in a multipath environment is crucial for reliable direction finding. In this work, the estimation algorithms are applied to the LOS component in the time domain channel impulse response which is acquired by applying the inverse Fourier transform to the simulated channel transfer function in the desired bandwidth. Different channel bandwidths as well as two AOA estimation methods have been considered in the modelling to investigate the performance of the standard deviation of angle estimation error. It has been shown that increasing the bandwidth in all simulated channel scenarios improves the estimation accuracy. / Seven Technologies Group, KTP project grant No. 008734.
|
14 |
Time-efficient simulation of free-space optical communication systems under atmospheric turbulence, pointing error, and angle-of-arrival fluctuationsNguyen, M.T., Mai, Vuong, Kim, H. 11 August 2024 (has links)
Yes / Computer simulation is a powerful and convenient tool for the design and performance evaluation of free-space optical (FSO) communication systems. In this article, we present two simulation frameworks that incorporate not only the effects of atmospheric turbulence but also the impact of the angular fluctuations of the transmitter and receiver in FSO systems. In the first framework, the waveform of the optical signal is calculated sequentially from the transmitter to the receiver. Thus, it takes very long to run the simulation numerous times to obtain the statistical performance of the system. This is because the vast majority of simulation time is spent on the split-step beam propagation. In the second framework, we propose to isolate the beam propagation through atmospheric channel from the other effects. We compare the two frameworks in terms of accuracy and simulation time. We show that the second framework reduces the simulation time by more than a factor of 10 without sacrificing the accuracy under various conditions. / 10.13039/501100003725-National Research Foundation of Korea HR&D Center Funded by the Ministry of Science and ICT (Grant Number: 2022M1A3C2069728)
|
15 |
Enhancement of precise underwater object localizationKaveripakum, S., Chinthaginjala, R., Anbazhagan, R., Alibakhshikenari, M., Virdee, B., Khan, S., Pau, G., See, C.H., Dayoub, I., Livreri, P., Abd-Alhameed, Raed 24 July 2023 (has links)
Yes / Underwater communication applications extensively use localization services for object identification. Because of their significant impact on ocean exploration and monitoring, underwater wireless sensor networks (UWSN) are becoming increasingly popular, and acoustic communications have largely overtaken radio frequency (RF) broadcasts as the dominant means of communication. The two localization methods that are most frequently employed are those that estimate the angle of arrival (AOA) and the time difference of arrival (TDoA). The military and civilian sectors rely heavily on UWSN for object identification in the underwater environment. As a result, there is a need in UWSN for an accurate localization technique that accounts for dynamic nature of the underwater environment. Time and position data are the two key parameters to accurately define the position of an object. Moreover, due to climate change there is now a need to constrain energy consumption by UWSN to limit carbon emission to meet net-zero target by 2050. To meet these challenges, we have developed an efficient localization algorithm for determining an object position based on the angle and distance of arrival of beacon signals. We have considered the factors like sensor nodes not being in time sync with each other and the fact that the speed of sound varies in water. Our simulation results show that the proposed approach can achieve great localization accuracy while accounting for temporal synchronization inaccuracies. When compared to existing localization approaches, the mean estimation error (MEE) and energy consumption figures, the proposed approach outperforms them. The MEEs is shown to vary between 84.2154m and 93.8275m for four trials, 61.2256m and 92.7956m for eight trials, and 42.6584m and 119.5228m for twelve trials. Comparatively, the distance-based measurements show higher accuracy than the angle-based measurements.
|
16 |
[en] SPACE-TIME CHARACTERIZATION OF THE MOBILE RADIO CHANNEL / [pt] CARACTERIZAÇÃO ESPAÇO-TEMPORAL DO CANAL RÁDIO MÓVELJANAINA FERREIRA MACEDO 21 May 2003 (has links)
[pt] Este trabalho apresenta os resultados da investigação da
utilização da Técnica de Sondagem em Frequência na
estimação de dispersividade Espaço-Temporal do Canal
Rádio Móvel. Modifcações na técnica clássica de varredura
em frequência foram implementadas: um conjunto de antenas
denominado array foi construído e calibrado e um
algoritmo de pós-processamento do sinal medido foi
testado. Foi realizada uma campanha de medidas em três
ambientes diferentes para averiguar a aplicabilidade do
conjunto. Foram obtidos bons resultados, demonstrando a
efciência da metodologia de medidas aplicada. / [en] This work presents the results of an investigation of the
use of the Frequency Sounding technique in Mobile Radio
Channel`s Space-Time Dispersion characterization. Hence,
some changes in the classical Frequency Sounding
Technique were employed: a set of antennas was built and
calibrated and an algorithm for signal pos processing was
tested. A measurement campaign was carried out on three
different environments to test the applicability of the set
as a whole. Very good results showed the efficiency of the
measurements methodology applied.
|
17 |
Direction Finding With Tdoa In A Multipath Land EnvironmentBasciftci, Cagri Halis 01 September 2007 (has links) (PDF)
In this thesis, the problem of Angle of Arrival estimation of radar signals with Time Difference of Arrival method in an outdoor land multipath environment with limited line of sight is analyzed. A system model is proposed. Effects of system, channel and radar parameters on the Angle of Arrival estimation performance are investigated through Monte Carlo simulations.
Improving effect of utilization of diversity on the estimation performance is observed. Performances of the space diversity with noncoherent and selective combining are compared.
Finally a realistic scenario is studied and performance of the proposed system is investigated.
|
18 |
AOA localization for vehicle-tracking systems using a dual-band sensor arrayAl-Sadoon, Mohammed A.G., Asif, Rameez, Al-Yasir, Yasir I.A., Abd-Alhameed, Raed, Excell, Peter S. 10 January 2021 (has links)
Yes / The issue of asset tracking in dense environments where the performance of the global positioning system (GPS) becomes unavailable or unreliable is addressed. The proposed solution uses a low-profile array of antenna elements (sensors) mounted on a finite conducting ground. A compact-size sensor array of six electrically small dual-band omnidirectional spiral antenna elements was designed as a front end of a tracker to operate in the 402 and 837 MHz spectrum bands. For the lower band, a three-element superposition method is applied to support estimation of the angle of arrival (AOA), whereas all six sensors are employed for the higher band. A low complexity and accurate AOA determination algorithm is proposed, the projection vector (PV), and this is combined with the array mentioned. Orthogonal frequency division multiplexing (OFDM) is integrated with the PV technique to increase the estimation resolution. The system was found to be suitable for installation on the roof of vehicles to localize the position of assets. The proposed system was tested for the tracking of nonstationary sources, and then two scenarios were investigated using propagation modeling software: outdoor to outdoor and outdoor to indoor. The results confirm that the proposed tracking system works efficiently with a single snapshot. / European Union Horizon 2020 Research and Innovation Program; 10.13039/501100009928 - Higher Committee for Education Development (HCED), Iraq
|
19 |
Direction of Arrival Estimation using Wideband Spectral Subspace ProjectionShaik, Majid January 2015 (has links)
No description available.
|
20 |
A self calibration technique for a DOA array in the presence of mutual coupling and resonant scatterersHoriki, Yasutaka 22 September 2006 (has links)
No description available.
|
Page generated in 0.1256 seconds