• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 18
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determining Sensitive and Accurate Measures for Detecting Balance Deficits Associated with Functional Ankle Instability

Linens, Shelley 27 July 2009 (has links)
The focus of this study was to determine the balance measures most sensitive and accurate in detecting balance deficits associated with functional ankle instability (FAI). Subjects consisted of those with a history of ankle sprains and resultant symptoms of giving way (N=17; Height=167.72±9.11 cm; Mass=67.81±12.29 kg; Age=23.35±3.62 yrs) and subjects without a history of ankle injuries (N=17; Height=168.16±8.32 cm; Mass=66.22±12.35 kg; Age=23.35±3.26 yrs). Data collection consisted of each subject performing static and dynamic balance tests. Static stability was assessed with force plate measures, the Balance Error Scoring System, foot lift test, and time-in-balance test. Dynamic stability was assessed with the Star Excursion Balance Test, side hop test, and figure-of-eight hop test. Significant receiver operating characteristic curves and therefore cutoff scores were found for the foot lift test (P=0.011; cutoff=4.84 foot lifts), time-in-balance test (P=0.020; cutoff=41.23 s), center-of-pressure velocity (P=0.026; cutoff=1.56 cm/s), anterior-posterior time-to-boundary standard deviation of the minima (P=0.054; cutoff=3.72 s), posteromedial reach direction of the Star Excursion Balance Test (P=0.039; cutoff=0.91 normalized to leg length) and side hop test (P=0.044; cutoff=12.88 s). The associated positive (≥2) and negative (≤0.05) likelihood ratios with each cutoff score indicated that changes in positive and negative posttest probabilities from the pretest probability of 50% were small, yet significant. Essentially, the significant change between pretest and posttest probabilities indicates that clinically relevant information was gained by conducting these balance measure because they quantified a high proportion of individuals with a positive test who have FAI and a low proportion of individuals with a negative test who have FAI. No significance was found for the Balance Error Scoring System (P=0.249), center-of-pressure area (P=0.547), anteromedial (P=0.134) and medial (P=0.125) reach directions of the Star Excursion Balance Test, and the figure-of-eight hop test (P=0.117). In conclusion, we found the foot lift test, time-in-balance test, center-of-pressure velocity, anterior-posterior time-to-boundary standard deviation of the minima, posteromedial reach direction of the Star Excursion Balance Test, and the side hop test to be sensitive and accurate balance measures for detecting balance deficits associated with FAI. We suggest utilizing these measures and their cutoff scores to evaluate balance deficits associated with FAI.
2

The effects of fatigue on plantar pressure distribution in subjects with chronic ankle instability after jump-landing task

Yniguez, Stephanie January 2011 (has links)
No description available.
3

The Effects of Abdominal Training on Postural Control, Lower Extremity Kinematics, Kinetics, and Muscle Activation

Gage, Matthew J. 04 August 2009 (has links) (PDF)
Context: Abdominal training may decrease the risk of lower extremity injuries through improved balance and postural control. Objective: To determine the effect of an eight-week abdominal-training program on center of pressure, lower extremity joint angles, and abdominal muscle activation during a single-leg drop landing. The effects of abdominal training on abdominal muscle thickness was assessed. Design: A cohort research design. Setting: Research laboratory. Other Participants: Sixty healthy physically active college-aged students participated. They were divided into three groups: Control, Chronic ankle instability (CAI), and Healthy. Nineteen Control (age = 22.0 ± 2.72 yrs, mass = 74.1 ± 13.8 kg, height = 172.6 ± 11.3 cm, BMI = 24.8 ± 3.1 %), 21 CAI (age = 22.1 ± 2.3 yrs, mass = 77.6 ± 14.0 kg, height = 175.4 ± 12.3 cm, BMI = 25.1 ± 2.6 %), and 20 healthy (age = 22.9 ± 3.4 yrs, mass = 70.9 ± 15.6 kg, height = 172.2 ± 8.9 cm, BMI = 23.7 ± 3.3 %). Subjects in the CAI group had a history of CAI and functional ankle instability (FAI). The Ankle Instability Index and the Functional Ankle Ability Measure were used to self-report CAI and FAI respectively. Interventions: The CAI and Healthy groups participated in an eight-week abdominal-training program while the Control group maintained their normal activities of daily living and level of physical activity. Main Outcome Measures: Abdominal muscle thickness was measured biweekly throughout the study. Center of pressure excursion, muscle activation, vertical ground reaction force, and lower extremity joint angles were measured during a single-leg drop landing, pre- and postabdominal training. Results: Muscle thickness at rest increased in the rectus abdominis and external oblique muscles follow training. Eight weeks of abdominal training decreased vertical ground reaction forces and muscle activation down the lower kinetic chain. Center of pressure excursion and velocity were increased following training. Conclusions: Eight-weeks of abdominal training increased abdominal muscle thickness. Training improved neuromuscular efficiency throughout the kinetic chain and may have improved dynamic postural control. Our data also suggest CAI subjects may utilize both feedforward and feedback mechanisms to maintain postural control.
4

Lower Extremity Neuromechanics During a Forward-Side Jump Following Functional Fatigue in Patients with Ankle Instability

Kim, Hyun 01 June 2015 (has links)
Ankle instability (AI) and fatigue impair neuromuscular control as well as dynamic joint stability of the lower extremity. No one has comprehensively examined the effects of AI and fatigue on neuromechanics of the lower extremity during a functional activity. Deficits associated with AI and fatigue could be additive in increasing the risk for injury in patients with AI. PURPOSE: To examine the interaction of AI and fatigue on lower extremity muscle activity, kinematic, and kinetic patterns during a forward-side jump. METHODS: 25 AI (23.3 ± 1.9 yrs, 176.5 ± 10.5 cm, 70.9 ± 11.4 kg), and 25 matched control subjects (23.7 ± 2.5 yrs, 175.0 ± 10.8 cm, 70.3 ± 12.8 kg) were categorized according to the Foot and Ankle Ability Measure (FAAM) (ADL: 84.3 ± 7.6%, Sport: 63.6 ± 8.6%) and the Modified Ankle Instability Instrument (MAII) (3.7 ± 1.2). Fifty-nine reflective markers were place over anatomical landmarks and eight electromyography (EMG) electrodes were placed on tibialis anterior (TA), peroneus longus (PL), medial gastrocmedius (MG), medial hamstring (MH), vastus lateralis (VL), adductor longus (AL), gluteus medius (GMed), and gluteus maximus (GMax) muscles in the involved leg. Subjects performed five forward-side jumps on a force plate before and after functional fatiguing exercises. To induce fatigue, subjects began 5-min incremental running on a treadmill between 5 and 6 mph. Next, subjects performed 20-second lateral counter movement jumps (CMJ), and 20 vertical CMJs. After each fatigue cycle, subjects performed one max vertical jump. Subjects repeated three exercises until Borg's rating of perceived exertion (RPE) reached 17 and the vertical jump height fell below 80% of their max jump height. Functional analysis of variance (FANOVA) (p < 0.05) was used to evaluate differences (a group by fatigue interaction) between two conditions (pre- vs post-fatigue) in each group (AI and control) for lower-extremity kinematic, kinetic and neuromuscular patterns. Pairwise comparison functions as well as 95% confidence interval (CI) bands were plotted to determine specific differences. If 95% CI bands did not cross the zero line, we considered the difference significant. RESULTS: Compared to the control group, the AI group demonstrated less range of dorsiflexion, knee and hip flexion motions during early phase of landing after fatigue. For sagittal-plane hip kinetics, subjects with AI decreased the hip extension moment while control subjects increased hip extension moments during landing following functional fatiguing exercise. The AI group showed less reduction of anterior-posterior ground reaction force (AP GRF) during transition phase of a forward-side jump after fatigue compared to control subjects. The AI group decreased EMG amplitude of PL, MH, and GMed while increased VL and GMax during landing after fatigue compared to control subjects. CONCLUSION: AI subjects demonstrated greater impairments in neuromechanical control patterns than a matched control group during a sport movement as fatigue progressed. Compared to AI group, control subjects showed a coordinated joint control strategy after fatigue, increasing joint angles from distal (ankle) to proximal (hip) joints by increasing hip extensor moments during landing from a forward-side jump in an attempt to reduce ground impact force. EMG alterations were consistent with patterns observed in injured patients, which may predispose patients to poor positions associated with lower extremity joint injury. These interactions between neuromuscular fatigue and AI may predispose individuals to lower extremity injuries.
5

The inter-examiner reliability of motion palpation to detect joint dysfunction in hindfoot and midfoot joints

Williams, Lisa Jane January 2010 (has links)
Dissertation submitted in partial compliance with the requirements for the Masters Degree in Technology: Chiropractic, Durban University of Technology, 2010. / The aim of this study was to determine the inter-examiner reliability of motion palpation to detect joint dysfunction in hindfoot and midfoot joints of asymptomatic feet and feet with chronic ankle instability syndrome. The rationale for this study was that motion palpation is a commonly used assessment tool that is used by the chiropractic profession to detect the need for manipulation of the spine and extremities. Also until the reliability of motion palpation is known, other studies using motion palpation as an assessment tool to detect the need for manipulation in the hindfoot and midfoot are questionable. The study was conducted at Durban University of Technology (DUT). Patients that responded to the adverts were then screened via telephonic interview. The researcher performed a case history, physical examination and a foot and ankle regional examination on each patient. Three masters chiropractic students then independently assessed both the symptomatic and asymptomatic feet of each patient and recorded their results. The data was then statistically analysed using SPSS version 15. It was found that the inter-examiner reliability of motion palpation for detecting restrictions in feet with chronic ankle instability syndrome was fair and for detecting instability, there was moderate reliability. In the asymptomatic group the examiners showed to have poor reliability in detecting restrictions and moderate reliability in detecting instability. Inter-examiner reliability was better in the symptomatic group and in this group examiners had more agreement on detecting instability as opposed to restrictions. This study has showed that inter-examiner reliability ranged from poor to moderate in the symptomatic and asymptomatic group with the reliability ranging from poor to moderate. Therefore, one can conclude that motion palpation can be used as an assessment tool to detect joint dysfunction in hindfoot and midfoot joints. However, further studies are warranted to address other subjective and objective measurements such as tenderness and range of motion together with motion palpation.
6

Prevention of Ankle Sprains

Schomacker, Travis January 2017 (has links)
No description available.
7

Biomechanics of Functional and Dynamic Tasks in Individuals with Chronic Ankle Instability

Simpson, Jeffrey Daniel 10 August 2018 (has links)
Chronic ankle instability (CAI), a pathological condition characterized by repetitive bouts of the ankle giving way, commonly develops following a lateral ankle sprain injury. Individuals with CAI have been shown to exhibit deficits in postural control and alterations in movement dynamics, which have been suggested to be contributing factors to the recurrent injury paradigm. The purpose of this investigation was to conduct a comprehensive biomechanical analyses to examine the influence of CAI on postural control and movement dynamics during a single leg squat, side-cut task, and single leg landing on an inverted surface. Fifteen participants with CAI and fifteen participants without CAI completed the study following a between-subjects design, with limb serving as the repeated measure during the single leg squat. Each participant completed a single leg squat, side-cut task, and unexpected and expected single leg landings on a tilted surface. Results from the single leg squat and single leg landings on the tilted surface were analyzed using a 2 x 2 mixed-model ANOVA, while results from the side-cut task were analyzed using an independent samples t-test. Statistical significance was considered for all dependent variables when p < 0.05. Individuals with CAI demonstrated impaired postural control, as indicated by reduced time-to-boundary, during the single leg squat compared to controls. Altered ankle joint kinetics and increased sagittal plane hip joint stiffness were observed in the CAI group compared to controls. With regards to the single leg landings on the inverted surface, during the unexpected landing condition the CAI group displayed altered neuromuscular control and ankle kinematics. However, when the landing on the inverted surface as expected, the CAI group exhibited similar motor control strategies to the control group. Findings from this study indicate CAI alters postural control and movement dynamics during functional and dynamic movements, which may be used by researchers and clinicians to develop rehabilitation protocols to restore maladaptive movement patterns in individuals that develop CAI.
8

The Effects of Whole Body Vibration on Dorsiflexion in Chronic Ankle Instability

Thalman, Lesley Abigail 09 December 2011 (has links) (PDF)
BACKGROUND: Whole body vibration (WBV) platforms are currently used as adjunctive training devices for exercise programs, and have been shown to facilitate flexibility. One of the biggest contributing factors to chronic ankle instability (CAI) is the lack of dorsiflexion after lateral ankle sprains and WBV may be an effective way to increase range of motion in this population. PURPOSE: Determine if WBV done concurrently with static stretching (SS) is more effective then SS alone in improving dorsiflexion ROM in subjects with CAI. METHODS: Subjects were divided into 3 groups (control, static stretch, and static stretch and vibrate). Subjects stretched 4 days/wk for 3 wks for 4 sets of 30 seconds alternating 2 different positions to stretch both the soleus and the gastrocnemius. Imposed vibration at 34 Hz 2mm during the stretches for the stretch group. ANALYSIS: Repeated measures ANOVA was performed using SPSS (version 19), with post-hoc Tukey tests as needed (p<.05). RESULTS: In both the straight and bent leg position, a significant group x time interaction was found for dorsiflexion range of motion. Post hoc tests revealed significance in the SV group between pre-tx and post-tx 1 and pre-tx and post-tx 2. No statistical significance was found between post-tx 1 and post-tx 2 in the SV group or at any time in the N or SS group. DISCUSSION: Static Stretching with vibration increases dorsiflexion ROM in subjects with CAI better than static stretching alone.
9

The Use of Inertial Measurement Unit for the Characterization of Multiple Functional Movement Patterns in Individuals with Chronic Ankle Instability

Han, Seunguk 07 December 2022 (has links) (PDF)
Patients with a history of lateral ankle sprain (LAS) may experience different levels of mechanical and/or sensorimotor deficits following their injuries. Although various factors, such as structural damage, sensorimotor adaptation, perceived instability, swelling and/or pain, can develop and perpetuate the condition of chronic ankle instability (CAI), most previous CAI research on biomechanics has considered all patients with CAI as a homogeneous group. Recent research has clustered patients with CAI into six distinct movement patterns during a maximal jump-landing/cutting task. This approach could motivate clinicians to develop appropriate rehabilitation programs for each patient with CAI depending on their movement patterns. However, evaluating patients with CAI for the quality of movement and sensorimotor deficits using a 3D motion capture system and a force plate is not easily accessible in clinical settings. PURPOSE: (i) to identify subgroups within the CAI population based on their movement patterns using inertial measurement unit (IMU) devices and (ii) to characterize each subgroup's functional movement patterns during maximal jump-landing/cutting relative to the uninjured controls. METHODS: A total of 100 patients with CAI (height = 1.76 ± 0.1 m, mass = 74.0 ± 14.9 kg) were assessed according to the Foot and Ankle Ability Measure (FAAM) (ADL: 84.3 ± 7.6%, Sport: 63.6 ± 8.6%) and the Ankle Instability Instrument (AII) (6.7 ± 1.2) and were fit into clusters based on their movement strategy during the maximal jump-landing/cutting task. A total of 21 uninjured controls (height = 1.74 ± 0.1 m, mass = 70.7 ± 13.4 kg) were compared with each cluster. Seven IMU sensors were placed on the base of the lumbar spine, lower and upper legs, and feet and participants performed 5 trials of the maximal jump-landing/cutting test. Joint kinematics in the lower extremity were collected during the task using IMU sensors. Data were reduced to functional curves; kinematic data from the sagittal and frontal planes were reduced to a single representative curve for each plane. Then, representative curves were clustered using a Bayesian clustering technique. Functional analyses of variance were used to identify between-group differences for outcome measures and describe specific movement characteristics of each subgroup. Pairwise comparison functions as well as 95% confidence interval (CI) bands were plotted to determine specific differences. If 95% CI bands did not cross the zero line, we considered the difference significant. RESULTS: Four distinct clusters were identified from the sagittal- and frontal-plane kinematic data. Specific movement patterns in each cluster compared to either uninjured controls or rest of patients with CAI were also identified. CONCLUSION: The IMUs were able to distinguish 4 clusters within the CAI population based on distinct movement patterns during a maximal jump-landing/cutting task. Thus, IMUs can be effective measuring devices to distinguish and characterize multiple distinct movement patterns without relying on a traditional 3D motion capture system. Clinicians should consider utilizing IMU devices to measure and evaluate specific movement patterns in the CAI population during multiplanar demanding tests before developing appropriate treatment interventions in clinical settings.
10

Mechanomyographical and Electromyographical Responses to Single Leg Hopping in Individuals with Functional Ankle Instability

Simon, Janet E. 05 August 2010 (has links)
No description available.

Page generated in 0.0597 seconds