• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 27
  • 26
  • 14
  • 13
  • 11
  • 6
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 332
  • 105
  • 90
  • 78
  • 68
  • 67
  • 59
  • 56
  • 53
  • 49
  • 41
  • 41
  • 39
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Novel considerations for lightning strike damage mitigation of Carbon Fiber Reinforced Polymer Matrix (CFRP) composite laminates

Yousefpour, Kamran 06 August 2021 (has links)
Lightning current with high amplitude disseminates through the body of aircraft and causes physical damages including the delamination and puncture of materials. Also , such high-amplitude and high-frequency current could interfere with electronic devices through electromagnetic coupling with the conductive interfaces of an airplane. Hence, robust protection against lighting strike is essential in the aerospace industry. Carbon Fiber Reinforced Polymer (CFRP) Matrix Composites have become significant alternatives to conventional metal-base materials. Despite the superior physical and structural properties of CFRP composites, these materials are vulnerable to lightning strikes due to the low electrical conductivity compared to the metal counterpart. Many researchers have been working on the lightning strike damage mitigation of CFRP composites by increasing the electrical conductivity of materials. Conventional methods are adding conductive layers such as metal foil and copper mesh to the composite structures. These layers are added to the composite structure during the manufacturing process and are placed at the top layer for the effective bypassing of lightning current to the ground. While adding the conductive layers reduces the lightning strike damage significantly, the industry is more interested in using conductive nanofillers to prevent the corrosion of metal layers in contact with carbon fibers and to avoid the higher weight of conductive layers than nanofillers. The lightning damage mitigation methods are studied by applying lightning strike current to the CFRP composites using an impulse current generator. Conventional lightning strike damage tolerance of CFRP composites are prone to misinterpretation. The risk of misinterpretation originates from the lack of standards clearly defining testbed design requirements including electrode size and ground electrode edge configuration. In this dissertation, the effects of testbed configuration including discharge and ground electrode on lightning strike damage evaluation studies are demonstrated. Finite element analysis is applied to perform the simulations through the COMSOL Multiphysics to validate the experimental test results. Furthermore, after improving the testbed design, carbon black was added to the CFRP composites as a cost-effective additive for lightning strike damage mitigation performance. Correlations between lightning strike damage intensity and the added carbon black fillers as well as with other additive nanofillers are reported.
232

Microstructure Changes In Solid Oxide Fuel Cell Anodes After Operation, Observed Using Three-Dimensional Reconstruction And Microchemical Analysis

Parikh, Harshil R. 09 February 2015 (has links)
No description available.
233

Structured Silicon Macropore as Anode in Lithium Ion Batteries

Sun, Xida 29 September 2011 (has links)
No description available.
234

Effect of Hydrogen Sulfide in Landfill Gas on Anode Poisoning of Solid Oxide Fuel Cells

Khan, Feroze 06 June 2012 (has links)
No description available.
235

The Performance of Planar Solid Oxide Fuel Cells using Hydrogen-depleted Coal Syngas

Burnette, David D. January 2007 (has links)
No description available.
236

DEVELOPMENT OF INNOVATIVE SOFCS BY COLLOIDAL PROCESSES AND CO-SINTERING TO BE USED BY BIOFUELS

Yousefi Javan, Kimia 23 April 2024 (has links)
Climate change and environmental degradation, in addition to the challenges of limited fossil fuel resources, have driven governments to pursue creative renewable energy sources. Natural gas and biofuels are limitless energy sources produced from both fossil fuels and biomass that is renewable. SOFCs (Solid Oxide Fuel Cells) are a type of renewable energy system that can convert biofuels into power and heat whenever needed. They often operate at high temperatures (> 850 °C), which allows for fuel flexibility; nevertheless, such high temperatures are associated by rapid material deterioration and performance loss, usually before 40,000 hours of operation. As a result, many recent studies and activities have concentrated on lowering the operating temperature of SOFCs. Lowering the temperature causes decreased ionic conductivity, decreased catalytic activity, and increased carbon deposition on the anode side catalysts. This project aimed at developing an innovative cathode-supported SOFC to be fed by biofuels and operating at low-intermediate temperatures. Colloidal processes and co-sintering were selected to fabricate the final SOFC owing to their flexibility in optimizing the final desired properties and saving more manufacturing costs. The first chapter of this thesis provides an introduction to the essential concepts as well as professional specifics and previous work. The cell design and component materials are defined, as are additional requirements for lowering the operating temperature in SOFCs. Commercialization challenges and recommended solutions are also discussed, which involve the development of both new anode materials and production procedures. The project's goal is detailed at the end of Chapter 1, along with the reasons why various approaches were chosen. Molybdenum was chosen as a suitable anodic material to be doped into LSCF, and tape casting was developed further to create the cathode. The cathode support layer should have a consistent thickness, balanced flexibility and mechanical strength, and better shrinkage qualities. The plasticizer is a high molecular weight polyethylene glycol (PEG 4000), which improves these characteristics. Chapter 2 covers the steps involved in creating the button SOFC, starting with powder synthesis and ending with cathode tape casting. SOFC performance and anode catalytic activity are investigated to assess SOFC durability while fed by biogas. In Chapter 3, the findings are presented and explored in various contexts. Meanwhile, the anode material performance and cathode design and structure receive the greatest attention. Molybdenum was doped into LSCF via auto-combustion, yielding a fine and porous powder form. X-ray diffraction patterns demonstrated that increasing the Mo dopant increases anodic stability. In parallel, flat and crack-free green cathodes with 47% solid loading can be obtained by adjusting the PEG 4000 to binder quantity ratio at 1.00 wt% and drying the tapes at 70% relative humidity. The tapes had an excellent mechanical strength to flexibility ratio, which allowed them to be readily handled and rolled. The tapes benefited from a strong balance of flexibility and mechanical strength, allowing them to be easily handled and rolled while also exhibiting very low residual stresses during subsequent lamination and co-sintering procedures. The final manufactured SOFC revealed a porous anode structure and a less porous cathode layer using electron microscopy. Whereas the electrolyte was dense enough to ensure gas tightness. There was no delamination throughout the cell. The cells were then electrochemically measured, and the reactivity of LSCFMo to various fuels and temperatures was investigated. LSCFMo performed best when fed by methanol at 700 °C, leaving no carbon traces after operation. The very low ohmic resistance of the electrodes indicates a very good design and manufacture technique. A conclusion is presented in the final section of this thesis to highlight the most significant achievements of this research.
237

Designing Electrochemical Energy Storage Microdevices: Li-Ion Batteries and Flexible Supercapacitors

Si, Wenping 30 January 2015 (has links) (PDF)
Die Menschheit steht vor der großen Herausforderung der Energieversorgung des 21. Jahrhundert. Nirgendwo ist diese noch dringlicher geworden als im Bereich der Energiespeicherung und Umwandlung. Konventionelle Energie kommt hauptsächlich aus fossilen Brennstoffen, die auf der Erde nur begrenzt vorhanden sind, und hat zu einer starken Belastung der Umwelt geführt. Zusätzlich nimmt der Energieverbrauch weiter zu, insbesondere durch die rasante Verbreitung von Fahrzeugen und verschiedener Kundenelektronik wie PCs und Mobiltelefone. Alternative Energiequellen sollten vor einer Energiekrise entwickelt werden. Die Gewinnung erneuerbarer Energie aus Sonne und Wind sind auf jeden Fall sehr wichtig, aber diese Energien sind oft nicht gleichmäßig und andauernd vorhanden. Energiespeichervorrichtungen sind daher von großer Bedeutung, weil sie für eine Stabilisierung der umgewandelten Energie sorgen. Darüber hinaus ist es eine enttäuschende Tatsache, dass der Akku eines Smartphones jeglichen Herstellers heute gerade einen Tag lang ausreicht, und die Nutzer einen zusätzlichen Akku zur Hand haben müssen. Die tragbare Elektronik benötigt dringend Hochleistungsenergiespeicher mit höherer Energiedichte. Der erste Teil der vorliegenden Arbeit beinhaltet Lithium-Ionen-Batterien unter Verwendung von einzelnen aufgerollten Siliziumstrukturen als Anoden, die durch nanotechnologische Methoden hergestellt werden. Eine Lab-on-Chip-Plattform wird für die Untersuchung der elektrochemischen Kinetik, der elektrischen Eigenschaften und die von dem Lithium verursachten strukturellen Veränderungen von einzelnen Siliziumrohrchen als Anoden in einer Lithium-Ionen-Batterie vorgestellt. In dem zweiten Teil wird ein neues Design und die Herstellung von flexiblen on-Chip, Festkörper Mikrosuperkondensatoren auf Basis von MnOx/Au-Multischichten vorgestellt, die mit aktueller Mikroelektronik kompatibel sind. Der Mikrosuperkondensator erzielt eine maximale Energiedichte von 1,75 mW h cm-3 und eine maximale Leistungsdichte von 3,44 W cm-3. Weiterhin wird ein flexibler und faserartig verwebter Superkondensator mit einem Cu-Draht als Substrat vorgestellt. Diese Dissertation wurde im Rahmen des Forschungsprojekts GRK 1215 "Rolled-up Nanotechnologie für on-Chip Energiespeicherung" 2010-2013, finanziell unterstützt von der International Research Training Group (IRTG), und dem PAKT Projekt "Elektrochemische Energiespeicherung in autonomen Systemen, no. 49004401" 2013-2014, angefertigt. Das Ziel der Projekte war die Entwicklung von fortschrittlichen Energiespeichermaterialien für die nächste Generation von Akkus und von flexiblen Superkondensatoren, um das Problem der Energiespeicherung zu addressieren. Hier bedanke ich mich sehr, dass IRTG mir die Möglichkeit angebotet hat, die Forschung in Deutschland stattzufinden. / Human beings are facing the grand energy challenge in the 21st century. Nowhere has this become more urgent than in the area of energy storage and conversion. Conventional energy is based on fossil fuels which are limited on the earth, and has caused extensive environmental pollutions. Additionally, the consumptions of energy are still increasing, especially with the rapid proliferation of vehicles and various consumer electronics like PCs and cell phones. We cannot rely on the earth’s limited legacy forever. Alternative energy resources should be developed before an energy crisis. The developments of renewable conversion energy from solar and wind are very important but these energies are often not even and continuous. Therefore, energy storage devices are of significant importance since they are the one stabilizing the converted energy. In addition, it is a disappointing fact that nowadays a smart phone, no matter of which brand, runs out of power in one day, and users have to carry an extra mobile power pack. Portable electronics demands urgently high-performance energy storage devices with higher energy density. The first part of this work involves lithium-ion micro-batteries utilizing single silicon rolled-up tubes as anodes, which are fabricated by the rolled-up nanotechnology approach. A lab-on-chip electrochemical device platform is presented for probing the electrochemical kinetics, electrical properties and lithium-driven structural changes of a single silicon rolled-up tube as an anode in lithium ion batteries. The second part introduces the new design and fabrication of on chip, all solid-state and flexible micro-supercapacitors based on MnOx/Au multilayers, which are compatible with current microelectronics. The micro-supercapacitor exhibits a maximum energy density of 1.75 mW h cm-3 and a maximum power density of 3.44 W cm-3. Furthermore, a flexible and weavable fiber-like supercapacitor is also demonstrated using Cu wire as substrate. This dissertation was written based on the research project supported by the International Research Training Group (IRTG) GRK 1215 "Rolled-up nanotech for on-chip energy storage" from the year 2010 to 2013 and PAKT project "Electrochemical energy storage in autonomous systems, no. 49004401" from 2013 to 2014. The aim of the projects was to design advanced energy storage materials for next-generation rechargeable batteries and flexible supercapacitors in order to address the energy issue. Here, I am deeply indebted to IRTG for giving me an opportunity to carry out the research project in Germany. September 2014, IFW Dresden, Germany Wenping Si
238

Untersuchungen zu den Eigenschaften der Anode der Festoxid-Brennstoffzelle (SOFC)

Stübner, Ralph 25 May 2002 (has links) (PDF)
This thesis investigates the electrical and electrochemical properties and the long-term stability of anodes of the solid oxide fuel cell (SOFC). A model is suggested, which describes the impedance spectra of symmetrical anode cells. According to this, the series resistance in the spectra is caused by the resistance of the electrolyte (YSZ), ohmic parts of the anodes, which are described as porous electrodes, and by the partial contacting of the anodes. A major contribution to it is provided by the nickel matrix in the anodes. The high frequency relaxation in the spectra is assigned to the transfer reaction, the low frequency to a gas diffusion inhibition along the gas supply channels. The degradation of the symmetrical anode cells, which has been observed in long-term experiments, is ascribed to a degradation of the electrolyte material, of the transfer reaction, of the nickel matrix in the anodes and of the contact resistance between the anodes and the current collecting nickel grids. The degradation rate of the last two depends on the gas composition. A model for the observed behaviour in time is presented. / Diese Arbeit untersucht die elektrischen und elektrochemischen Eigenschaften und die Langzeitbeständigkeit der Anoden von Festoxid-Brennstoffzellen (SOFC). Ein Modell wird vorgestellt, mit dem die Impedanzspektren symmetrischer Anodenzellen beschrieben werden können. Demnach ist der Serienwiderstand in den Spektren verursacht durch den Widerstand des Elektrolyten (YSZ), ohmsche Anteile in den Anoden, die als poröse Elektroden beschrieben werden, und durch die partielle Kontaktierung der Anoden. Maßgebliche Beiträge liefert hier die Nickelmatrix in den Anoden. Die hochfrequente Relaxation in den Spektren wird der Durchtrittsreaktion, die niederfrequente einer Gasdiffusionshemmung entlang der Gasversorgungskanäle zugeordnet. Die in Langzeitversuchen beobachtete Degradation der symmetrischen Anondenzellen wird zurückgeführt auf eine Degradation des Elektrolytmaterials, der Durchtrittsreaktion, der Nickelmatrix in den Anoden und des Kontaktwiderstandes zwischen den Anoden und den stromabnehmenden Nickelnetzen. Die Degradation der beiden letzteren ist in ihrer Rate abhängig von der Gaszusammensetzung. Ein Modell für das beobachtete zeitliche Verhalten wird vorgestellt.
239

Strain engineered nanomembranes as anodes for lithium ion batteries

Deng, Junwen 08 January 2015 (has links)
Lithium ion batteries (LIBs) have attracted considerable interest due to their wide range of applications, such as portable electronics, electric vehicles (EVs) and aerospace applications. Particularly, the emergence of a variety of nanostructured materials has driven the development of LIBs towards the next generation, which is featured with high specific energy and large power density. Herein, rolled-up nanotechnology is introduced for the design of strain-released materials as anodes of LIBs. Upon this approach, self-rolled nanostructures can be elegantly combined with different functional materials and form a tubular shape by relaxing the intrinsic strain, thus allowing for enhanced tolerance towards stress cracking. In addition, the hollow tube center efficiently facilitates electrolyte mass flow and accommodates volume variation during cycling. In this context, such structures are promising candidates for electrode materials of LIBs to potentially address their intrinsic issues. This work focuses on the development of superior structures of Si and SnO2 for LIBs based on the rolled-up nanotech. Specifically, Si is the most promising substitute for graphite anodes due to its abundance and high theoretical gravimetric capacity. Combined with the C material, a Si/C self-wound nanomembrane structure is firstly realized. Benefiting from a strain-released tubular shape, the bilayer self-rolled structures exhibit an enhanced electrochemical behavior over commercial Si microparticles. Remarkably, this behavior is further improved by introducing a double-sided carbon coating to form a C/Si/C self-rolled structure. With SnO2 as active material, an intriguing sandwich-stacked structure is studied. Furthermore, this novel structure, with a minimized strain energy due to strain release, exposes more active sites for the electrochemical reactions, and also provides additional channels for fast ion diffusion and electron transport. The electrochemical characterization and morphology evolution reveal the excellent cycling performance and stability of such structures.
240

Designing Electrochemical Energy Storage Microdevices: Li-Ion Batteries and Flexible Supercapacitors

Si, Wenping 22 January 2015 (has links)
Die Menschheit steht vor der großen Herausforderung der Energieversorgung des 21. Jahrhundert. Nirgendwo ist diese noch dringlicher geworden als im Bereich der Energiespeicherung und Umwandlung. Konventionelle Energie kommt hauptsächlich aus fossilen Brennstoffen, die auf der Erde nur begrenzt vorhanden sind, und hat zu einer starken Belastung der Umwelt geführt. Zusätzlich nimmt der Energieverbrauch weiter zu, insbesondere durch die rasante Verbreitung von Fahrzeugen und verschiedener Kundenelektronik wie PCs und Mobiltelefone. Alternative Energiequellen sollten vor einer Energiekrise entwickelt werden. Die Gewinnung erneuerbarer Energie aus Sonne und Wind sind auf jeden Fall sehr wichtig, aber diese Energien sind oft nicht gleichmäßig und andauernd vorhanden. Energiespeichervorrichtungen sind daher von großer Bedeutung, weil sie für eine Stabilisierung der umgewandelten Energie sorgen. Darüber hinaus ist es eine enttäuschende Tatsache, dass der Akku eines Smartphones jeglichen Herstellers heute gerade einen Tag lang ausreicht, und die Nutzer einen zusätzlichen Akku zur Hand haben müssen. Die tragbare Elektronik benötigt dringend Hochleistungsenergiespeicher mit höherer Energiedichte. Der erste Teil der vorliegenden Arbeit beinhaltet Lithium-Ionen-Batterien unter Verwendung von einzelnen aufgerollten Siliziumstrukturen als Anoden, die durch nanotechnologische Methoden hergestellt werden. Eine Lab-on-Chip-Plattform wird für die Untersuchung der elektrochemischen Kinetik, der elektrischen Eigenschaften und die von dem Lithium verursachten strukturellen Veränderungen von einzelnen Siliziumrohrchen als Anoden in einer Lithium-Ionen-Batterie vorgestellt. In dem zweiten Teil wird ein neues Design und die Herstellung von flexiblen on-Chip, Festkörper Mikrosuperkondensatoren auf Basis von MnOx/Au-Multischichten vorgestellt, die mit aktueller Mikroelektronik kompatibel sind. Der Mikrosuperkondensator erzielt eine maximale Energiedichte von 1,75 mW h cm-3 und eine maximale Leistungsdichte von 3,44 W cm-3. Weiterhin wird ein flexibler und faserartig verwebter Superkondensator mit einem Cu-Draht als Substrat vorgestellt. Diese Dissertation wurde im Rahmen des Forschungsprojekts GRK 1215 "Rolled-up Nanotechnologie für on-Chip Energiespeicherung" 2010-2013, finanziell unterstützt von der International Research Training Group (IRTG), und dem PAKT Projekt "Elektrochemische Energiespeicherung in autonomen Systemen, no. 49004401" 2013-2014, angefertigt. Das Ziel der Projekte war die Entwicklung von fortschrittlichen Energiespeichermaterialien für die nächste Generation von Akkus und von flexiblen Superkondensatoren, um das Problem der Energiespeicherung zu addressieren. Hier bedanke ich mich sehr, dass IRTG mir die Möglichkeit angebotet hat, die Forschung in Deutschland stattzufinden. / Human beings are facing the grand energy challenge in the 21st century. Nowhere has this become more urgent than in the area of energy storage and conversion. Conventional energy is based on fossil fuels which are limited on the earth, and has caused extensive environmental pollutions. Additionally, the consumptions of energy are still increasing, especially with the rapid proliferation of vehicles and various consumer electronics like PCs and cell phones. We cannot rely on the earth’s limited legacy forever. Alternative energy resources should be developed before an energy crisis. The developments of renewable conversion energy from solar and wind are very important but these energies are often not even and continuous. Therefore, energy storage devices are of significant importance since they are the one stabilizing the converted energy. In addition, it is a disappointing fact that nowadays a smart phone, no matter of which brand, runs out of power in one day, and users have to carry an extra mobile power pack. Portable electronics demands urgently high-performance energy storage devices with higher energy density. The first part of this work involves lithium-ion micro-batteries utilizing single silicon rolled-up tubes as anodes, which are fabricated by the rolled-up nanotechnology approach. A lab-on-chip electrochemical device platform is presented for probing the electrochemical kinetics, electrical properties and lithium-driven structural changes of a single silicon rolled-up tube as an anode in lithium ion batteries. The second part introduces the new design and fabrication of on chip, all solid-state and flexible micro-supercapacitors based on MnOx/Au multilayers, which are compatible with current microelectronics. The micro-supercapacitor exhibits a maximum energy density of 1.75 mW h cm-3 and a maximum power density of 3.44 W cm-3. Furthermore, a flexible and weavable fiber-like supercapacitor is also demonstrated using Cu wire as substrate. This dissertation was written based on the research project supported by the International Research Training Group (IRTG) GRK 1215 "Rolled-up nanotech for on-chip energy storage" from the year 2010 to 2013 and PAKT project "Electrochemical energy storage in autonomous systems, no. 49004401" from 2013 to 2014. The aim of the projects was to design advanced energy storage materials for next-generation rechargeable batteries and flexible supercapacitors in order to address the energy issue. Here, I am deeply indebted to IRTG for giving me an opportunity to carry out the research project in Germany. September 2014, IFW Dresden, Germany Wenping Si

Page generated in 0.0321 seconds