1 |
Geochemistry of manganese and iron across both stable and dynamic natural oxic-anoxic transition zonesTrouwborst, Robert Elisa. January 2006 (has links)
Thesis (Ph.D.)--University of Delaware, 2006. / Principal faculty advisor: George W. Luther, III., College of Marine and Earth Studies. Includes bibliographical references.
|
2 |
Submarine plateau volcanism and Cretaceous Ocean Anoxic Event 1a : geochemical evidence from Aptian sedimentary sections /Walczak, Paul S. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 73-79). Also available on the World Wide Web.
|
3 |
Acoustic observations of zooplankton distribution in Saanich Inlet, an intermittently anoxic fjordBeveridge, Ian Alexander 01 March 2010 (has links)
A biological front at the mouth of Saanich Inlet results in higher rates of primary productivity at the inlet mouth relative to the head creating a gradient that could influence zooplankton distribution. A shallow sill (75m) at the inlet mouth restricts circulation below sill depth, isolating the deep basin for much of the year. Anoxia develops in the isolated basin and the depth of the anoxic layer changes during the year. During the day, pelagic zooplankton form a deep scattering layer. Between April 2005 and March 2006. I conducted monthly 200kHz acoustic surveys between the mouth and head of Saanich Inlet to test the hypothesis that zooplankton density was greater near the mouth relative to the head. I was also interested in how changing anoxic layer depth affected the distribution of the deep scattering layer. I found that zooplankton density followed a headward gradient in the spring and summer. with the highest densities near the mouth. Zooplankton density was higher near the mouth or the mid-inlet relative to the head in 75% of transects. I did not observe a zooplankton density gradient during the winter. Zooplankton distribution was affected by dissolved oxygen concentration. Deep scattering layer depth was significantly correlated with the depth of the anoxic layer and vertical compression of the deep scattering layer increased as the anoxic layer moved upwards. When the depth of the anoxic layer was less than 90 meters. zooplankton were nearly absent.
Vertical migration of the deep scattering layer to surface waters at night has been well documented. but zooplankton migration patterns in the shallow waters of Saanich Inlet have not been described. I used 200kHz acoustic data collected by the VENUS observatory (96m) and an autonomous acoustic system deployed at a shallow site (62m) in Patricia Bay to study zooplankton migration patterns. Horizontal movement of the deep scattering layer over shallow depths following vertical migration was infrequent. Over 41 days of observation at the shallow site. I only observed deep scattering layer zooplankton on 12 days. At the shallow site. night-time volume backscatter was dominated by the emergence of benthic zooplankton. The movement of these scatterers into the water column at night resulted in a 14-fold increase in volume backscatter over daytime values. I observed this emergence pattern at both sites. which represents an important component of benthic-pelagic coupling in Saanich Inlet. In contrast to the deer scattering layer. which migrated to the surface each night, emergent zooplankton remained within 30-40 meters of the seafloor and did not ascend into surface waters.
|
4 |
Nitrogen cycling in oxygen deficient zones : insights from [delta]¹⁵N and [delta]¹⁸O of nitrite and nitrateBuchwald, Carolyn January 2013 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2013. / In title on title page, "[delta]" appears as lower case Greek letters. Cataloged from PDF version of thesis. / Includes bibliographical references. / The stable isotopes, [delta]¹⁵N and [delta]¹⁸O, of nitrite and nitrate can be powerful tools used to interpret nitrogen cycling in the ocean. They are particularly useful in regions of the ocean where there are multiple sources and sinks of nitrogenous nutrients, which concentration profiles alone cannot distinguish. Examples of such regions are "oxygen deficient zones" (ODZ). They are of particular interest because they are also important hot spots of fixed N loss and production of N₂O, a potent greenhouse gas. In order to interpret these isotope profiles, the isotope systematics of each process involved must be known so that we can distinguish the isotopic signature of each process. One of the important processes to consider here is nitrification, the process by which ammonium is oxidized nitrite and then to nitrate. This thesis describes numerous experiments using both cultures of nitrifying organisms as well as natural seawater samples to determine the oxygen isotope systematics of nitrification. These experimental incubations show that the accumulation of nitrite has a large effect on the resulting [delta]¹⁸ONO3. In experiments where nitrite does not accumulate, [delta]¹⁸ONO3 produced from nitrification is between -1 to l%o. These values will be applicable for the majority of the ocean, but the nitrite isotopic exchange will be important in the regions of the ocean where nitrite accumulates, such as the base of the euphotic zone and oxygen deficient zones. [delta]¹⁸ONO2 was developed as a unique tracer in this thesis because it undergoes abiotic equilibration with water [delta]¹⁸O at a predictable rate based on pH, temperature and salinity. This rate, its dependencies, and how the [delta]¹⁸ONO2 values can be used as not only biological source indicators but also indicators of age are described. This method was applied to samples from the primary nitrite maximum in the Arabian Sea, revealing that the dominant source and sinks of nitrite are ammonia oxidation and nitrite oxidation with an average age of 37 days. Finally, using the isotope systematics of nitrification as well as the properties of nitrite oxygen isotope exchange described in this thesis, the final chapter interprets multiisotope nitrate and nitrite profiles in the Costa Rica Upwelling Dome using a simple ID model. The nitrite isotopes showed that there were multiple sources of nitrite in the primary nitrite maximum including (1) decoupling of ammonia oxidation and nitrite oxidation, (2) nitrate reduction during assimilation and leakage of nitrite by phytoplankton. In the oxygen deficient zone and secondary nitrite maximum, there were equal contributions of nitrite removal from nitrite oxidation and nitrite reduction. This recycling of nitrite to nitrate through oxidation indicates that the percentage of reduced nitrate fully consumed to N2 gas is actually smaller than previous estimates. Overall, this thesis describes new nitrogen and oxygen isotopic tracers and uses them to elucidate the complicated nitrogen biogeochemistry in oxygen deficient zones. / by Carolyn Buchwald. / Ph.D.
|
5 |
The role of oxygen and other environmental variables on survivorship, abundance, and community structure of invertebrate meroplankton of Oregon nearshore coastal watersEerkes-Medrano, Dafne I. 06 January 2013 (has links)
The high productivity of Eastern Boundary Upwelling Ecosystems (EBUE), some of the most productive ecosystems in the globe, is attributed to the nutrient rich waters brought up through upwelling. Climate change scenarios for coastal upwelling systems, predict an intensification of coastal upwelling winds. Associated with intensification in upwelling are biogeochemical changes such as ocean hypoxia and ocean acidification.
In recent years, the California Current System (CCS) has experienced the occurrence of nearshore hypoxia and the novel rise of anoxia. This has been attributed to changes in the intensity of upwelling wind stress. The effects of some of the more severe hypoxia and anoxia events in the CCS have been mass mortality of fish and benthic invertebrates. However, the impacts on zooplankton in this system are not known.
Meroplankton, those organisms which have a planktonic stage for only part of their life cycle, are an important component of zooplankton communities. The larval stage of benthic invertebrates forms an important link between benthic adult communities and planktonic communities. Larvae serve to disperse individuals to new locations and to link populations. They are also food for fish and planktonic invertebrates. This important life stage can spend long periods in the plankton (from days to months) where environmental conditions can affect larval health, subsequent settlement and recruitment success, and juvenile health.
This research assesses the role of hypoxia and larval survivorship, and the relationship between individual abundance and community structure of larvae to environmental factors in the field. In laboratory experiments (Chapter 2), a suite of 10 rocky intertidal invertebrate species from four phyla were exposed to low oxygen conditions representative of the nearshore environment of the Oregon coast. Results revealed a wide range in tolerances from species with little tolerance (e.g. the shore crab Hemigrapsus oregonensis) to species with high tolerance (e.g. the California mussel Mytilus californianus). The differential responses across larvae to chronic hypoxia and anoxia potentially could affect their recruitment success and consequently, the structure and species composition of intertidal communities.
Field studies (Chapter 3 & 4) explore the relationship between environmental variables and larval abundance and community structure. Chapter 3 focuses on broad taxonomic groups, while Chapter 4 focuses on larval decapods in particular. Fine focus was devoted to decapod larvae, due to laboratory findings of heightened sensitivity to hypoxia of decapod crabs. A finding that is also supported in the literature. The goal of field studies was to identify the environmental parameters that structure meroplankton and larval decapod communities and identify which of these parameters play a significant role in influencing larval abundance. A number of environmental variables contributed to meroplankton assemblage structure and larval decapod assemblage structure. These included distance from shore, depth, date, upwelling intensity, dissolved oxygen, and cumulative wind stress. Some of these factors occurred frequently in larval abundance models. In Chapter 3, individual abundance across broad taxonomic groups was most commonly explained by upwelling intensity while in Chapter 4, individual abundance of different decapod species was explained by cumulative wind stress, which is a proxy for upwelling intensity. The prominent role of upwelling related factors in explaining individual abundance is important considering climate change projections of an increased intensification of upwelling winds in EBUE. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Jan. 6, 2012 - Jan. 6, 2013
|
6 |
Oxic and anoxic transformations of leaf derived organic matter in freshwater systemsConway, Carol Leza, n/a January 2005 (has links)
In Australia, significant effort goes into reducing the amount of nitrogen and phosphorus
entering inland waters from point sources. However, little is known of the extent to
which riparian organic matter may act as a source of these nutrients. Also, whilst the relationships
between the nitrogen, phosphorus and carbon cycles are broadly known, there
is little quantitative data regarding the release of these elements from Australian riparian
organic matter and their subsequent microbial mineralisation within aquatic environments.
In particular, comparatively little is known of their comparative role in nutrient and organic
matter cycling within anoxic zones, and the influence that different riparian organic matter
may have on stream water quality. This lack of such data presently hampers the ability of
water managers to make educated decisions regarding the management of riparian zones
in Australia. In order to improve understanding in this area, a combination of laboratory
and in situ experiments were carried out in order to compare the abiotic release and aerobic/
anaerobic mineralisation of leaf derived dissolved organic carbon (DOC), dissolved
nitrate/nitrite (NOx) and soluble reactive phosphorus (SRP) under different environmental
conditions. Four plants common to Australian riparian zones were investigated: two native
species, Eucalyptus camaldulensis (gum) and Phragmites australis (common reed), and
two exotic species, Salix babylonica (willow) and Lolium multiflorum (rye grass). After 30
days, formaldehyde inhibited 1g willow and rye grass extracts contained the most SRP (0.7
mg/L), whilst gum extracts contained 0.3 mg/L and common reed 0.1 mg/L of SRP.Willow
and rye grass abiotically released twice as much NOx than gum and common reed, although
concentrations were only between 0.05-0.1 mg/L. Gum and common reed released the most
DOC per gram of leaf matter (14 and 12 mmol/g of leaf matter respectively), but based on
the initial carbon content of each leaf type, the largest percentage contributor of DOC under
abiotic conditions was common reed and rye grass (both 38% mass/mass), with gum (33%
mass/mass) and willow (30% mass/mass) being smaller contributors. The most bioavailable
DOC was released by rye grass and common reed, with between 83 and 94% of this
DOC microbially mineralised after 30 days in oxic conditions. When conditions were not
inhibited, microbial growth was evident almost immediately in willow, rye grass and common
reed leaf extracts. However, microbial growth was suppressed for the first 48 hours
in gum leaf extracts. After this suppression period, the rate of DOC mineralisation was
equal in willow and gum leaf extracts (0.1 day-1). Under anoxic conditions, the rate and
extent of DOC mineralisation of willow and gum leaves depended on the type of electron
acceptor provided. Added nitrate and iron III enhanced the mineralisation of both willow
and gum leaves relative to no terminal electron acceptors (from zero to 0.01-0.04 and 0.002-
0.004 moles/day respectively), but added sulphate only enhanced the mineralisation of gum
leaves (0.04 moles/day). When no additional electron acceptors were provided, particulate
leaf mineralisation was more extensive under oxic than anoxic conditions. However, the
mineralisation of leaf derived DOC were the same regardless of oxygen availability, and
after 35 days in either condition the percentage of leaf DOC mineralised for each leaf type
was of the order common reed > rye grass > willow > gum. All the leaf types tested were
able to sustain the caddis fly larvae Triplectides australis under controlled laboratory conditions,
and survival rates were high using all four leaf types as a food source. Triplectides
australis did not significantly increase the amount of DOC released from each type of leaf
matter, but they did consistently increase the proportion of simple carbohydrates present
within the DOC fraction. The results of these experiments suggest that changes to riparian
vegetation, particularly from the native to exotic species used in this study, will inherently
alter in-stream concentrations of dissolved carbon and nutrients (particularly SRP). This
potentially will affect in-stream, hyporheic and subsurface processes, particularly in areas
where surface water flow is low and riparian leaf inputs are high.
|
7 |
Microbial diversity, metabolic potential, and transcriptional activity along the inner continental shelf of the Northeast Pacific OceanBertagnolli, Anthony D. 12 April 2012 (has links)
Continental shelves located along eastern boundary currents occupy relatively small volumes of the world’s oceans, yet are responsible for a large proportion of global primary production. The Oregon coast is among these ecosystems. Recent analyses of dissolved oxygen at shallow depths in the water column has suggested increasing episodes of hypoxia and anoxia, events that are detrimental to larger macro-faunal species. Microbial communities, however, are metabolically diverse, capable of utilizing alternative electron donors and acceptors, and can withstand transient periods of low dissolved oxygen. Understanding the phylogenetic and metabolic diversity of microorganisms in these environments is important for assessing the impact hypoxic events have on local and global biogeochemistry. Several molecular ecology tools were used to answer questions about the distribution patterns and activities of microorganisms residing along the coast of Oregon in this dissertation. Ribosomal rRNA fingerprinting and sequence analyses of samples collected during 2007-2008 suggested that bacterial community structure was not substantially influenced by changes in dissolved oxygen. However, substantial depth dependent changes were observed, with samples collected in the bottom boundary layer (BBL) displaying significant differences from those collected in the surface layer. Phylogenetic analyses of bacterial rRNA genes revealed novel phylotypes associated with this area of the water column, including groups with close evolutionary relationships to putative or characterized sulfur oxidizing bacteria (SOB). Analysis of metagenomes and metatranscriptomes collected during 2009 suggested increasing abundances of chemolithoautrophic organisms and their activities in the BBL. Thaumarchaea displayed significant depth dependent increases during the summer, and were detected at maximal frequencies during periods of hypoxia, suggesting that nitrification maybe influenced by local changes in dissolved oxygen. Metagenomic analysis of samples collected from 2010 revealed substantial variability in the metabolic potential of the microbial communities from different water masses. Samples collected during the spring, prior to upwelling clustered independently of those collected during the summer, during a period of upwelling, and did not display any clear stratification. Samples collected during the summer did cluster based on depth, consistent with previous observations, and increases in the relative abundances of chemolithotrophic gene suites were observed in the BBL during stratified conditions, suggesting that the metabolic potential for these processes is a repeatable feature along the Oregon coast. Overall, these observations suggest that depth impacts microbial community diversity, metabolic potential, and transcriptional activity in shallow areas of the Northeast Pacific Ocean. The increase in lithotrophic genes and transcripts in the BBL suggests that this microbial community includes many organisms that are able to use inorganic electron donors for respiration. We speculate that the dissolved organic material in the BBL is semi-labile and not available for immediate oxidation, favoring the growth for microorganisms that are able to use alternative electron donors. / Graduation date: 2012
|
Page generated in 0.0404 seconds