• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies on the biology and control of weedy species of Lolium (annual rye-grasses)

Al-shallash, Khalid S. January 1995 (has links)
No description available.
2

Allelopathic interactions between wheat, selected crop species and the weed Lolium multiflorum x perenne

Ferreira, Michael Ignatius 21 June 2011 (has links)
No information is available on the role of allelopathy in crop rotation systems of the Western Cape Province of South Africa, where more than 100 000 ha are under threat from herbicide-resistant rye grass. A study which investigated the use of allelopathic properties for the suppression of rye grass hybrid type (Lolium multiflorum x perenne) was undertaken. These objectives were accomplished by: a) exploring the use of allelopathic properties of crop residues for rye grass suppression; b) evaluation of the role of allelopathy from seeds, seedlings, roots and above-ground plant material of rotational crops; c) assessing the distribution of genetic and morphological variability of rye grass and d) determining the interactions among micro-organisms and allelopathic root leachates from rotational crops and rye grass. In the field trials, growth inhibitory or stimulatory effects were observed on crops exposed to the residues of others. Medic suppressed the weed type rye grass. The radicle length of rye grass was inhibited by seed leachates from wheat and lupine. Growth inhibition from lupine seed and seedling leachates was evident in rye grass radicle length and cumulative germination percentage. Morphologically, 50% of the total number of specimens was classified as rigid rye grass, 48% as the hybrid, namely L. multiflorum x perenne and 2% as perennial rye grass. The wide genetic and morphological variation detected in rye grass may be due to high genotypic plasticity and hybridisation for producing the weed type L. multiflorum x perenne. The faster growth rate of rye grass on Langgewens soil treated with barley root leachates was revealed by Principal Component Analysis (PCA) as a probable association with growth-promoting soil micro-organisms. Crop cultivars and weeds may modify the soil micro-organism populations to their advantage and to the disadvantage of other species by the release of root exudates that apparently differ in composition between plant species. The effect on microbial communities varied with source of exudates and between soils. / Thesis (PhD)--University of Pretoria, 2011. / Plant Production and Soil Science / unrestricted
3

Investigation of the Interactions Among Grass, Chlorophenols and Microbes

Crane, Cynthia Elizabeth 09 July 1999 (has links)
Studies were conducted to explore the interactions among rye grass, chlorophenols and microorganisms. The objectives were to examine some of the processes by which plants affect the fate of subsurface organic contaminants. The research was divided into three studies: interactions between live grasses and 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP), and pentachlorophenol (PCP); physico-chemical interactions between the three chlorophenols and root tissue; and effect of root exudates on biodegradation of TCP. To study the interactions between plants and organic contaminants, rye grass plants were grown in solutions containing DCP, TCP or PCP for one to three weeks. The grass removed substantial amounts of the chlorophenols throughout the incubation time. The majority of each chlorophenol removed from solution could not be recovered by non-destructive solvent extraction. The removal of the chlorophenols from solution and the unrecoverability of the removed compound followed different kinetics, indicating that the two are different processes. Both contaminant removal and unrecoverability were closely related to root surface area but not to transpiration. A qualitative model was developed to describe the uptake of organic contaminants by plants. The data demonstrate the importance of physico-chemical interactions between contaminants and roots and suggest that maximization of root surface area should be one consideration when selecting a plant species for phytoremediation. To study the physico-chemical interactions between plant roots and organic contaminants, the distribution of DCP, TCP and PCP within a three phase system was examined. The three phases were severed grass roots, water and an organic solvent, either hexane or ethyl acetate. The chlorophenol mass that partitioned into the solvent phase was inversely correlated with root mass and root surface area index. Partition coefficients calculated with respect to the organic liquid phase were inversely correlated with root mass and root surface area index. A similar partitioning experiment was conducted using PCP placed in a solution containing only the dissolved organic material released by roots. These resulting partition coefficients decreased with increasing organic carbon concentration. It appeared that the organic compounds released into solution by the roots affected the movement of the chlorophenol into the organic liquid phase. It is proposed that the presence of roots simultaneously promoted retention of the chlorphenols in the aqueous phase and provided a sorption site. The effect of grass root exudates and glucose on the lag time associated with 2,4,6-trichlorophenol (TCP) degradation by an unacclimated microbial inoculant and an acclimated microbial inoculant was investigated. The presence of an alternate organic carbon source reduced lag time for both the acclimated microbial inoculant and the inoculant that had not been previously exposed to chlorinated phenols. The lag time for acclimation of microbes to TCP mineralization was affected by the ratio of the alternate organic carbon source concentration to the biomass concentration. It is proposed that the presence of a readily available, alternate organic carbon source affected lag time through promotion of microbial population growth and provision of a preferred source of carbon and energy. The results indicate that rye grass may directly, through partitioning and uptake, and indirectly, through soil microbes, affect the fate of chlorophenols in the subsurface environment. / Ph. D.
4

Improving the bioconversion of lignocellulosic feedstock to bio-fuels and chemicals

Kumi, Philemon James January 2015 (has links)
This study investigated the fate of lignocellulosic biomass (wheat-feed and perennial rye grass) in different anaerobic digestion systems, evaluating the role of substrate specificity on the pattern of degradation. The two-stage (biohydrogen-biomethane) anaerobic system was found to be more effective in the degradation of lignocellulose, when compared to the conventional single-stage system. The perennial rye grass substrate possessed about 21% higher holocellulose concentration when compared to the wheat-feed; its exploitation in the acidogenic digestion was however poor, resulting in a 2.9% lower biogas yield in a equivalent two-stage system. The study therefore developed a treatment technique involving the use of cellulase and ferulic acid esterase enzyme combinations for the treatment of perennial rye grass. The enzyme cocktail at 0.202 ml enzyme/g VS added resulted in efficient bioconversion of the complex polymers to soluble carbohydrates, evident in the yield increase of soluble COD, to 321.0±10.9 mg/gVS, a 393.2% yield increase, when compared to the no enzyme added control. The yield of bio-hydrogen after enzymatic addition was 48ml/gVS, 335% higher when compared to the alkaline treatment; and more than seven fold higher than the yield obtained from the fermentation with no pre-treatment. The acetate to butyrate ratio varied from 4:1, when no pre-treatment was used, to 2:1when alkaline pre-treatment was used, then to 1:1 after the enzymatic treatment. The downstream effect of the prior hydrolysis on the subsequent processes to acidogenic fermentation like biomethane and PHA production and lignin recovery were also investigated. The hydrogenic/acidogenic fermentation resulted in methane yield improvement of 45.7%. The study shows that the more effective a hydrolysis procedure is in the depolymerisation of complex polymers, the greater the accumulation of PHA in the PHA biosynthesis operations. The enhanced hydrogenic /acidogenic fermentation having effectively degraded the holocellulose component of the perennial rye grass substrate ensured that relatively high quality lignin was obtained in an Organosolv lignin-extraction procedure. FT-IR profile show less contamination of polysaccharides and proteins in the lignin extracted from the enzymatically enhanced acidogenic fermentation. An evaluation of the economic viability of the investigated secondary processes showed that direct integrations of those processes to the biohydrogen process may not be as economically advantageous, when compared to a 2nd -stage biomethanation system.
5

Oxic and anoxic transformations of leaf derived organic matter in freshwater systems

Conway, Carol Leza, n/a January 2005 (has links)
In Australia, significant effort goes into reducing the amount of nitrogen and phosphorus entering inland waters from point sources. However, little is known of the extent to which riparian organic matter may act as a source of these nutrients. Also, whilst the relationships between the nitrogen, phosphorus and carbon cycles are broadly known, there is little quantitative data regarding the release of these elements from Australian riparian organic matter and their subsequent microbial mineralisation within aquatic environments. In particular, comparatively little is known of their comparative role in nutrient and organic matter cycling within anoxic zones, and the influence that different riparian organic matter may have on stream water quality. This lack of such data presently hampers the ability of water managers to make educated decisions regarding the management of riparian zones in Australia. In order to improve understanding in this area, a combination of laboratory and in situ experiments were carried out in order to compare the abiotic release and aerobic/ anaerobic mineralisation of leaf derived dissolved organic carbon (DOC), dissolved nitrate/nitrite (NOx) and soluble reactive phosphorus (SRP) under different environmental conditions. Four plants common to Australian riparian zones were investigated: two native species, Eucalyptus camaldulensis (gum) and Phragmites australis (common reed), and two exotic species, Salix babylonica (willow) and Lolium multiflorum (rye grass). After 30 days, formaldehyde inhibited 1g willow and rye grass extracts contained the most SRP (0.7 mg/L), whilst gum extracts contained 0.3 mg/L and common reed 0.1 mg/L of SRP.Willow and rye grass abiotically released twice as much NOx than gum and common reed, although concentrations were only between 0.05-0.1 mg/L. Gum and common reed released the most DOC per gram of leaf matter (14 and 12 mmol/g of leaf matter respectively), but based on the initial carbon content of each leaf type, the largest percentage contributor of DOC under abiotic conditions was common reed and rye grass (both 38% mass/mass), with gum (33% mass/mass) and willow (30% mass/mass) being smaller contributors. The most bioavailable DOC was released by rye grass and common reed, with between 83 and 94% of this DOC microbially mineralised after 30 days in oxic conditions. When conditions were not inhibited, microbial growth was evident almost immediately in willow, rye grass and common reed leaf extracts. However, microbial growth was suppressed for the first 48 hours in gum leaf extracts. After this suppression period, the rate of DOC mineralisation was equal in willow and gum leaf extracts (0.1 day-1). Under anoxic conditions, the rate and extent of DOC mineralisation of willow and gum leaves depended on the type of electron acceptor provided. Added nitrate and iron III enhanced the mineralisation of both willow and gum leaves relative to no terminal electron acceptors (from zero to 0.01-0.04 and 0.002- 0.004 moles/day respectively), but added sulphate only enhanced the mineralisation of gum leaves (0.04 moles/day). When no additional electron acceptors were provided, particulate leaf mineralisation was more extensive under oxic than anoxic conditions. However, the mineralisation of leaf derived DOC were the same regardless of oxygen availability, and after 35 days in either condition the percentage of leaf DOC mineralised for each leaf type was of the order common reed > rye grass > willow > gum. All the leaf types tested were able to sustain the caddis fly larvae Triplectides australis under controlled laboratory conditions, and survival rates were high using all four leaf types as a food source. Triplectides australis did not significantly increase the amount of DOC released from each type of leaf matter, but they did consistently increase the proportion of simple carbohydrates present within the DOC fraction. The results of these experiments suggest that changes to riparian vegetation, particularly from the native to exotic species used in this study, will inherently alter in-stream concentrations of dissolved carbon and nutrients (particularly SRP). This potentially will affect in-stream, hyporheic and subsurface processes, particularly in areas where surface water flow is low and riparian leaf inputs are high.
6

Phosphordüngewirkung von Klärschlämmen aus Klärwerken mit Phosphateliminierung durch Eisensalze / Phosphate fertilization effects of sewage sludges from waste water processing plants with phosphate elimination by iron salts

Abd El-Samie, Ihab Mohamed Farid 06 February 2003 (has links)
No description available.

Page generated in 0.07 seconds