• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • Tagged with
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Klärschlammkonzeption 2015: Konzeption zur Entsorgung von Abfällen aus der kommunalen Abwasserbehandlung im Freistaat Sachsen: Fortschreibung 2015 - Klärschlammkonzeption 2015

Pfefferkorn, Christel, Wustmann, Frank, Scholich, Gerlind 07 May 2016 (has links)
Für die anstehende Fortschreibung des Abfallwirtschaftsplans für den Freistaat Sachsen war eine weitere Fortschreibung der Klärschlammkonzeption erforderlich. In der Klärschlammkonzeption 2015 wird aufbauend auf der Ist-Situation im Rahmen von Szenarienbetrachtungen die Entsorgung der Abfälle aus der Abwasserbehandlung im Freistaat Sachsen, insbesondere der Klärschlämme, im Hinblick auf die sich ändernden rechtlichen Bedingungen in den Jahren 2020 und 2025 dargestellt. Ergebnisse und Aussagen der Studie sollen dazu dienen, die Entsorgung der Klärschlämme durch die Aufgabenträger ökologisch, wirtschaftlich und sicher zu gewährleisten.
2

Hygienisation and nutrient conservation of sewage sludge or cattle manure by lactic acid fermentation

Scheinemann, Hendrik A., Dittmar, Katja, Stöckel, Frank S., Müller, Hermann, Krüger, Monika E. 18 March 2015 (has links) (PDF)
Manure from animal farms and sewage sludge contain pathogens and opportunistic organisms in various concentrations depending on the health of the herds and human sources. Other than for the presence of pathogens, these waste substances are excellent nutrient sources and constitute a preferred organic fertilizer. However, because of the pathogens, the risks of infection of animals or humans increase with the indiscriminate use of manure, especially liquid manure or sludge, for agriculture. This potential problem can increase with the global connectedness of animal herds fed imported feed grown on fields fertilized with local manures. This paper describes a simple, easy-to-use, low-tech hygienization method which conserves nutrients and does not require large investments in infrastructure. The proposed method uses the microbiotic shift during mesophilic fermentation of cow manure or sewage sludge during which gram-negative bacteria, enterococci and yeasts were inactivated below the detection limit of 3 log10 cfu/g while lactobacilli increased up to a thousand fold. Pathogens like Salmonella, Listeria monocytogenes, Staphylococcus aureus, E. coli EHEC O:157 and vegetative Clostridium perfringens were inactivated within 3 days of fermentation. In addition, ECBO-viruses and eggs of Ascaris suum were inactivated within 7 and 56 days, respectively. Compared to the mass lost through composting (15–57%), the loss of mass during fermentation (< 2.45%) is very low and provides strong economic and ecological benefits for this process. This method might be an acceptable hygienization method for developed as well as undeveloped countries, and could play a key role in public and animal health while safely closing the nutrient cycle by reducing the necessity of using energy-inefficient inorganic fertilizer for crop production.
3

Statusbericht zur Klärschlammentsorgung 2020: Statusbericht zur Klärschlammentsorgung aus der kommunalen Abwasserbehandlung im Freistaat Sachsen 2020

Wagner, Jörg, Richter, Romana, Struck, Karsten, Dinslage, Roman 25 October 2021 (has links)
In Zusammenhang mit der Fortschreibung des Abfallwirtschaftsplans für den Freistaat Sachsen wurde der „Statusbericht zur Klärschlammentsorgung 2020“ erarbeitet. Ausgehend von den gesetzlichen Grundlagen wird im Bericht die derzeitige Situation der Klärschlammentsorgung in Sachsen dargestellt. Aspekte der zukünftigen Klärschlammentsorgung werden erörtert. Der aktuelle Stand der in Entwicklung befindlichen Verfahren der Phosphorrückgewinnung wird aufgeführt. Der Bericht soll u.a. den Kläranlagenbetreibern und Klärschlammentsorgern als Informationsgrundlage dienen. Redaktionsschluss: 26.11.2020
4

Developing an integrated concept for sewage sludge treatment and disposal from municipal wastewater treatment systems in (peri-)urban areas in Vietnam / Entwicklung eines ganzheitlichen Konzeptes zur Behandlung und Entsorgung von Klärschlamm aus kommunalen Abwasserbehandlungsanlagen in (peri-)urbanen Gebieten Vietnams

Karius, Ralf 23 August 2011 (has links) (PDF)
The study took place in Vietnam at Hanoi University of Science in the framework of the DAAD (German Academic Exchange Service) – “An advancement of the German-Vietnamese University partnerships”. The research has been supported by the program: “Wastewater and Solid Waste Management in Provincial Centers” and belongs to its technical component. The present diploma thesis elaborates the current situation of sewage sludge management in Vietnam and is dealing with sludge characteristics from both domestic sewage treatment facilities and septic tanks. During the research, different treatment components and treatment facilities have been analyzed to carry out a comprehensive survey of sewage sludge types. In this thesis, a guideline (draft) was developed as a main result, which can be helpful to bridge the legislative gap for sewage sludge re-use in Vietnam. In conclusion, an integrated concept has been developed, which recommends the application of selected proceeding elements to treat sewage sludge and the further utilization of re-useable materials in agriculture in a controlled and environmentally-safe manner. / Die Diplomarbeit wurde im Rahmen des Deutsch-Vietnamesischem Auslandsaustauschprogramms an der „Hanoi University of Science“ verfasst. Dieses Vorhaben wurde unterstützt von dem DAAD (Deutschen Akademischen Austausch Dienst), und ist im technischem Bereich des Programms “Wastewater and Solid Waste Management in Provincial Centers“ einzugliedern. Die vorstehende Diplomarbeit beschäftigt sich mit dem aktuellen Klärschlammmanagement in Vietnam und liefert dabei detaillierte Resultate zu verschiedenen Klarschlammtypen aus kommunalen Abwasserbehandlungsanlagen. Bei den Untersuchungen wurden verschiedene Abwasser- und Klärschlammbehandlungsanlagen untersucht, um einen Überblick zu den gebräuchlichen Behandlungsmethoden in Vietnam zu erarbeiten. Zusätzlich wurden die institutionellen und rechtlichen Rahmenbedingungen überprüft. Der Entwurf einer Verordnung zur Verwertung von Klärschlamm in der Landwirtschaft wurde vorgelegt, um eine bestehende rechtliche Lücke in Vietnam zu schließen. Mit dieser Arbeit wurde ein integriertes Konzept entwickelt, welches mittels verschiedene verfahrenstechnische Elemente den Klärschlamm behandelt und darauffolgend das verwertbare Material in ausgewählten landwirtschaftlichen Flächen in einer kontrollierten und umweltschonenden Weise verwertet.
5

Hygienisation and nutrient conservation of sewage sludge or cattle manure by lactic acid fermentation: Hygienisation and nutrient conservation ofsewage sludge or cattle manure by lacticacid fermentation

Scheinemann, Hendrik A., Dittmar, Katja, Stöckel, Frank S., Müller, Hermann, Krüger, Monika E. January 2015 (has links)
Manure from animal farms and sewage sludge contain pathogens and opportunistic organisms in various concentrations depending on the health of the herds and human sources. Other than for the presence of pathogens, these waste substances are excellent nutrient sources and constitute a preferred organic fertilizer. However, because of the pathogens, the risks of infection of animals or humans increase with the indiscriminate use of manure, especially liquid manure or sludge, for agriculture. This potential problem can increase with the global connectedness of animal herds fed imported feed grown on fields fertilized with local manures. This paper describes a simple, easy-to-use, low-tech hygienization method which conserves nutrients and does not require large investments in infrastructure. The proposed method uses the microbiotic shift during mesophilic fermentation of cow manure or sewage sludge during which gram-negative bacteria, enterococci and yeasts were inactivated below the detection limit of 3 log10 cfu/g while lactobacilli increased up to a thousand fold. Pathogens like Salmonella, Listeria monocytogenes, Staphylococcus aureus, E. coli EHEC O:157 and vegetative Clostridium perfringens were inactivated within 3 days of fermentation. In addition, ECBO-viruses and eggs of Ascaris suum were inactivated within 7 and 56 days, respectively. Compared to the mass lost through composting (15–57%), the loss of mass during fermentation (< 2.45%) is very low and provides strong economic and ecological benefits for this process. This method might be an acceptable hygienization method for developed as well as undeveloped countries, and could play a key role in public and animal health while safely closing the nutrient cycle by reducing the necessity of using energy-inefficient inorganic fertilizer for crop production.
6

Developing an integrated concept for sewage sludge treatment and disposal from municipal wastewater treatment systems in (peri-)urban areas in Vietnam

Karius, Ralf 06 July 2011 (has links)
The study took place in Vietnam at Hanoi University of Science in the framework of the DAAD (German Academic Exchange Service) – “An advancement of the German-Vietnamese University partnerships”. The research has been supported by the program: “Wastewater and Solid Waste Management in Provincial Centers” and belongs to its technical component. The present diploma thesis elaborates the current situation of sewage sludge management in Vietnam and is dealing with sludge characteristics from both domestic sewage treatment facilities and septic tanks. During the research, different treatment components and treatment facilities have been analyzed to carry out a comprehensive survey of sewage sludge types. In this thesis, a guideline (draft) was developed as a main result, which can be helpful to bridge the legislative gap for sewage sludge re-use in Vietnam. In conclusion, an integrated concept has been developed, which recommends the application of selected proceeding elements to treat sewage sludge and the further utilization of re-useable materials in agriculture in a controlled and environmentally-safe manner.:Abbreviations .......................................................................................................................... 4 List of Figures ......................................................................................................................... 5 List of Tables .......................................................................................................................... 6 Acknowledgement .................................................................................................................. 7 Abstract .................................................................................................................................. 8 1 Introduction ................................................................................................................... 10 2 Legal framework for sewage sludge management in Vietnam ................................. 13 2.1 Background ........................................................................................................... 13 2.2 Institutional framework .......................................................................................... 13 2.3 Legal framework.................................................................................................... 15 2.4 Standards .............................................................................................................. 18 2.4.1 Technical standards ...................................................................................... 18 2.4.2 National standards ........................................................................................ 19 2.5 Current situation .................................................................................................... 20 3 Theoretical basis for the concept ................................................................................ 22 3.1 Sewage sludge ...................................................................................................... 23 3.1.1 Sewage sludge types .................................................................................... 27 3.1.2 Quantity .......................................................................................................... 30 3.1.3 Sludge volume ............................................................................................... 30 3.1.4 Sludge composition ....................................................................................... 34 4 Municipal wastewater treatment plants ...................................................................... 47 4.1 DEWATS ............................................................................................................... 47 4.2 Waste water management program .................................................................... 48 4.2.1 Results of sludge analysis ............................................................................ 50 4.3 Learned outcomes ................................................................................................ 54 5 Sludge treatment and disposal options ...................................................................... 56 5.1 Goals of sludge treatment .................................................................................... 56 5.2 Processing elements ............................................................................................ 58 5.2.1 Pre-treatment ................................................................................................. 59 5.2.2 Transportation................................................................................................ 60 5.2.3 Stabilization.................................................................................................... 60 5.2.4 Disinfection .................................................................................................... 65 5.2.5 Removal of water .......................................................................................... 65 5.2.6 Drying ............................................................................................................. 70 5.2.7 Agricultural uses and landscape measures ................................................ 70 5.2.8 Biological re-uses .......................................................................................... 71 5.2.9 Thermal disposal (energy recovery) ............................................................ 74 5.2.10 Land-filling ...................................................................................................... 76 6 Sewage sludge management concept ....................................................................... 78 6.1 Avoidance .............................................................................................................. 79 6.2 Treatment .............................................................................................................. 79 6.2.1 Proposed treatment concept ........................................................................ 81 6.3 Re-use or Disposal ............................................................................................... 84 6.3.1 Small-scale concept ...................................................................................... 85 6.3.2 Medium- and large-scale concept ................................................................ 85 6.4 Conclusion ............................................................................................................. 86 7 Guideline (draft) ............................................................................................................ 88 7.1 Formulation of a guidance document .................................................................. 88 8 Conclusion .................................................................................................................... 89 9 References .................................................................................................................... 92 10 Appendices ................................................................................................................ 97 a) Calculation of sludge amount .................................................................................. 97 b) Guideline (draft) ........................................................................................................ 99 Declaration .......................................................................................................................... 106 / Die Diplomarbeit wurde im Rahmen des Deutsch-Vietnamesischem Auslandsaustauschprogramms an der „Hanoi University of Science“ verfasst. Dieses Vorhaben wurde unterstützt von dem DAAD (Deutschen Akademischen Austausch Dienst), und ist im technischem Bereich des Programms “Wastewater and Solid Waste Management in Provincial Centers“ einzugliedern. Die vorstehende Diplomarbeit beschäftigt sich mit dem aktuellen Klärschlammmanagement in Vietnam und liefert dabei detaillierte Resultate zu verschiedenen Klarschlammtypen aus kommunalen Abwasserbehandlungsanlagen. Bei den Untersuchungen wurden verschiedene Abwasser- und Klärschlammbehandlungsanlagen untersucht, um einen Überblick zu den gebräuchlichen Behandlungsmethoden in Vietnam zu erarbeiten. Zusätzlich wurden die institutionellen und rechtlichen Rahmenbedingungen überprüft. Der Entwurf einer Verordnung zur Verwertung von Klärschlamm in der Landwirtschaft wurde vorgelegt, um eine bestehende rechtliche Lücke in Vietnam zu schließen. Mit dieser Arbeit wurde ein integriertes Konzept entwickelt, welches mittels verschiedene verfahrenstechnische Elemente den Klärschlamm behandelt und darauffolgend das verwertbare Material in ausgewählten landwirtschaftlichen Flächen in einer kontrollierten und umweltschonenden Weise verwertet.:Abbreviations .......................................................................................................................... 4 List of Figures ......................................................................................................................... 5 List of Tables .......................................................................................................................... 6 Acknowledgement .................................................................................................................. 7 Abstract .................................................................................................................................. 8 1 Introduction ................................................................................................................... 10 2 Legal framework for sewage sludge management in Vietnam ................................. 13 2.1 Background ........................................................................................................... 13 2.2 Institutional framework .......................................................................................... 13 2.3 Legal framework.................................................................................................... 15 2.4 Standards .............................................................................................................. 18 2.4.1 Technical standards ...................................................................................... 18 2.4.2 National standards ........................................................................................ 19 2.5 Current situation .................................................................................................... 20 3 Theoretical basis for the concept ................................................................................ 22 3.1 Sewage sludge ...................................................................................................... 23 3.1.1 Sewage sludge types .................................................................................... 27 3.1.2 Quantity .......................................................................................................... 30 3.1.3 Sludge volume ............................................................................................... 30 3.1.4 Sludge composition ....................................................................................... 34 4 Municipal wastewater treatment plants ...................................................................... 47 4.1 DEWATS ............................................................................................................... 47 4.2 Waste water management program .................................................................... 48 4.2.1 Results of sludge analysis ............................................................................ 50 4.3 Learned outcomes ................................................................................................ 54 5 Sludge treatment and disposal options ...................................................................... 56 5.1 Goals of sludge treatment .................................................................................... 56 5.2 Processing elements ............................................................................................ 58 5.2.1 Pre-treatment ................................................................................................. 59 5.2.2 Transportation................................................................................................ 60 5.2.3 Stabilization.................................................................................................... 60 5.2.4 Disinfection .................................................................................................... 65 5.2.5 Removal of water .......................................................................................... 65 5.2.6 Drying ............................................................................................................. 70 5.2.7 Agricultural uses and landscape measures ................................................ 70 5.2.8 Biological re-uses .......................................................................................... 71 5.2.9 Thermal disposal (energy recovery) ............................................................ 74 5.2.10 Land-filling ...................................................................................................... 76 6 Sewage sludge management concept ....................................................................... 78 6.1 Avoidance .............................................................................................................. 79 6.2 Treatment .............................................................................................................. 79 6.2.1 Proposed treatment concept ........................................................................ 81 6.3 Re-use or Disposal ............................................................................................... 84 6.3.1 Small-scale concept ...................................................................................... 85 6.3.2 Medium- and large-scale concept ................................................................ 85 6.4 Conclusion ............................................................................................................. 86 7 Guideline (draft) ............................................................................................................ 88 7.1 Formulation of a guidance document .................................................................. 88 8 Conclusion .................................................................................................................... 89 9 References .................................................................................................................... 92 10 Appendices ................................................................................................................ 97 a) Calculation of sludge amount .................................................................................. 97 b) Guideline (draft) ........................................................................................................ 99 Declaration .......................................................................................................................... 106
7

Rekultivierung von Deponien unter Betrachtung des Einsatzes von Klärschlammkompost

Penckert, Paula 02 March 2021 (has links)
Durch die Novellierung der AbfKlärV im Jahr 2017 wurde die bodenbezogene Nutzung von Klärschlamm stark eingeschränkt. Dadurch rückt dessen thermische Verwertung zunehmend in den Vordergrund, wobei durch eine Mitverbrennung Nährstoffe verloren gehen. Diese Arbeit betrachtet alternative Möglichkeiten zur stofflichen Verwertung, wie den Einsatz als Rekultivierungsmaterial auf Deponien in Form von Komposten. In die Arbeit fließt die Betrachtung von Pilzkultursubstraten als weiterer Zuschlagstoff ein, da diese aufgrund von Hygienisierungsvorschriften ebenfalls meist thermisch verwertet werden und auch hier wichtige Nährstoffe verloren gehen. Weiterhin wird untersucht, ob Deponieflächen generell für den Anbau von Bewuchs geeignet sind und insbesondere, ob auf derartig rekultivierten Flächen Rohstoffgewinnung aus Energiepflanzen möglich ist. Dafür wurden verschiedene Materialmischungen hergestellt und in Pflanzversuchen unter Laborbedingungen sowie im Freiland und in geotechnischen Versuchen auf ihre Eignung überprüft. Es wird gezeigt, dass Deponien ein Flächenpotential darstellen und diese auch für Bewuchs geeignet sind. Auch eignen sich die hergestellten Materialmischungen grundsätzlich als Rekultivierungsmaterial. Diese müssen aber in zukünftigen Versuchen in Hinsicht auf die Einhaltung von Grenzwerten und bspw. deren Wasserdurchlässigkeiten weiter angepasst werden, bevor die Mischungen produktiv im großen Maßstab einsetzbar sind.
8

Entwicklung eines Verfahrens zur dezentralen Nutzung biogener Reststoffe

Thiel, Nina 19 June 2019 (has links)
Ziel dieser Arbeit ist die Entwicklung eines Verfahrens zur thermochemischen Umwandlung von biogenen Einsatzstoffen, insbesondere von Reststoffen wie z.B. Klärschlamm (KS). Das Verfahren soll dezentral, d.h. im Leistungsbereich von 100 – 1.000 kW Feuerungswärmeleistung, und zur Bereitstellung elektrischer Energie eingesetzt werden. Für diese Anforderungen ist beim Stand der Technik kein Verfahren verfügbar. In dieser Arbeit werden die verfahrenstechnischen Zusammenhänge und brennstoffspezifischen Anforderungen analysiert und daraus ein Verfahren abgeleitet, welches für das angestrebte Ziel eingesetzt werden kann. Dieses Verfahren besteht im Wesentlichen aus zwei Teilen, 1. der Brennstoffumwandlung (Thermo-Chemical-Conversion) auf einem Druck von ca. 3 bar abs. und 2. einem Kraftprozess (Turbo-Compound-Concept). Der erste Verfahrensteil setzt sich aus einer Druck-Wirbelschichtvergasung zur thermochemischen Umsetzung des Brennstoffes, einem Zyklon zur Staubabscheidung und einer nachgeschalteten Druck-Brennkammer zur Verbrennung des Vergasungsgases zusammen. Der zweite Teil beinhaltet als Kraftprozess ein Turbo-Compound-Concept zur Bereitstellung elektrischer Energie, welches thermodynamisch dem Gasturbinenprozess gleicht. Das Verfahren zeichnet sich im Vergleich zum Stand der Technik durch seine Eignung für ein breites Brennstoffspektrum, insbesondere für „schwierige“ Einsatzstoffe (z.B. niedrige Ascheschmelztemperatur), aus. Dies wird durch die Ausgestaltung des Verfahrens in Stufen, die eingesetzten Apparate und die Robustheit der gewählten Kraftmaschine erreicht. Das hergeleitete Verfahren wird mittels Masse-, Stoff- und Energiebilanzen für die Referenzbrennstoffe KS und Holzhackschnitzel (HHS) untersucht, sowohl hinsichtlich des thermodynamischen Potentials (verlustfrei) als auch hinsichtlich real erwartbarer Leistungsdaten durch die Einbeziehung wesentlicher Verluste. In Verfahrensvarianten werden die Abwärmenutzung zur Reaktionsgasvorwärmung, die Abwärmenutzung zur Brennstoffvorbehandlung von Klärschlamm, der Einsatz eines inversen Gasturbinenprozesses und die Anhebung der Turbineneintrittstemperatur analysiert. Im Ergebnis liegt der elektrische Nettowirkungsgrad der Basisvariante unter Berücksichtigung von Verlusten bei ca. 9 % für KS und kann auf bis zu ca. 18 % durch Wärmerückführung zur Reaktionsgasvorwärmung und durch Anheben der Turbineneintrittstemperatur gesteigert werden. Des Weiteren wird speziell für KS gezeigt, dass der Wärmebedarf für dessen Vorbehandlung durch die Abwärme des Verfahrens bilanziell vollständig gedeckt werden kann. Das Ergebnis des inversen Gasturbinenprozesses als Vergleichsprozess hingegen ist, dass damit der elektrische Eigenbedarf die elektrische Bruttoleistung übersteigt und somit keine elektrische Nettoleistung bereitgestellt wird. Als praktischer Schritt zur Entwicklung und Realisierung des Verfahrens wird eine Versuchsanlage im Demonstrationsmaßstab entwickelt und in Betrieb genommen. Bei den experimentellen Untersuchungen liegt in dem hier gesteckten Rahmen der Schwerpunkt auf dem ersten Teil des Verfahrens, der Brennstoffumwandlung unter annähernd atmosphärischen Bedingungen, ohne dass hierbei bereits eine Optimierung in Richtung der NOX-Emissionen vorgesehen ist. Die experimentellen Untersuchungen in dieser Arbeit haben allein das Ziel, die Funktionsweise der Brennstoffumwandlung nachzuweisen. Für die Optimierung sind an der Versuchsanlage ausreichend Möglichkeiten für Primärmaßnahmen zur Minimierung von NOX-Emissionen vorgesehen. Vor dem Hintergrund der Zielstellung verliefen die experimentellen Untersuchungen alle erfolgreich. Im Ergebnis zeigen sich ein stabiler Wirbelschichtbetrieb und dadurch bedingt homogene Verläufe von Temperaturen und Vergasungsgaszusammensetzungen. Die Ascheanalyse zeigt mit nur 3 Ma.-% Glühverlust beim Einsatz von KS einen besseren Brennstoffumsatz im Vergleich zu kommerziellen Großanlagen mit KS-Vergasung. Durch die erfolgreichen experimentellen Untersuchungen zum ersten Teil des Verfahrens, der Brennstoffumwandlung, ist ein wesentlicher Beitrag zur Entwicklung und Realisierung des Gesamtverfahrens geleistet worden. Im Weiteren muss die Optimierung für die NOX-Emissionen und die Ankopplung des Kraftprozesses im Nenndruckbetrieb erfolgen. Hieraus werden ggf. eine konstruktive Anpassung des Turbinenapparates und die Entwicklung von Regelabhängigkeiten für den kombinierten Betrieb beider Teilverfahren notwendig. Die Versuchsanlage ist für einen Überdruckbetrieb zugelassen und kann somit für zukünftige Versuche mit dem zweiten Verfahrensteil eingesetzt werden. Da die Versuchsanlage im Nennbetrieb unter Druck für eine Feuerungswärmeleistung von 230 kW ausgelegt ist, muss sie für eine kommerzielle Anlage nicht skaliert werden.:Abstract I Kurzzusammenfassung III Danksagung V Formelzeichen IX Indizes X Abkürzungsverzeichnis XI Abbildungsverzeichnis XIII Tabellenverzeichnis XVI 1 Einleitung 1 1.1 Zielsetzung 1 1.2 Aufbau der Arbeit 1 1.3 Übergeordnete Relevanz für den Einsatzstoff Klärschlamm 2 2 Stand der Technik 3 2.1 Biogene Einsatzstoffe 3 2.2 Brennstoffvorbehandlung 4 2.2.1 Herstellung von Holzhackschnitzeln und Holzpellets 5 2.2.2 Klärschlammvorbehandlung mittels Faulung und Hydrothermaler Carbonisierung (HTC) 7 2.2.3 Klärschlammtrocknung mit Brüdenverdichtung 14 2.2.4 Zusammenfassung zur Brennstoffvorbehandlung 18 2.3 Vergasung biogener Einsatzstoffe 18 2.3.1 Bilanzierung eines Verfahrens mit Holzpellets 21 2.3.2 Bilanzierung eines Verfahrens mit Holzhackschnitzeln 25 2.3.3 Vergleich der zwei Beispielverfahren 28 2.3.4 Thermochemische Umwandlung von Klärschlamm 29 2.3.5 Zusammenfassung zum Stand der Technik von Vergasungsverfahren biogener Einsatzstoffe 30 3 Entwicklung des Verfahrens 31 3.1 Anforderungen an das Verfahren 31 3.2 Verfahrenshypothese 34 3.3 Herleitung des Verfahrens 36 3.3.1 Wahl des Kraftprozesses 36 3.3.2 Stufung des thermochemischen Umwandlungsverfahrens 40 3.3.3 Wahl der Apparate 42 3.4 Zusammenfassung zur Entwicklung des Verfahrens 45 4 Theoretische Untersuchung des Verfahrens 46 4.1 Bilanzierung des Verfahrens (Basisvariante) 46 4.1.1 Referenzbrennstoffe 48 4.1.2 Bilanzierungsmethode und Annahmen 49 4.1.3 Thermodynamisches Potential des Verfahrens 55 4.1.4 Verlustbehaftete Bilanzierung des Verfahrens 59 4.1.5 Detailergebnis zur Prozessberechnung des Turbo-Compound-Concept 65 4.2 Untersuchung von Verfahrensvarianten 67 4.2.1 Wärmerückgewinnung zur Reaktionsgasvorwärmung 67 4.2.2 Deckung des Energiebedarfs zur Brennstoffvorbehandlung 75 4.2.3 Inverser Gasturbinenprozess 78 4.3 Ergebniszusammenfassung der untersuchten Verfahrensvarianten 83 4.4 Einordnung des Verfahrens in den Stand der Technik 86 5 Experimentelle Untersuchungen 88 5.1 Versuchsanlage 88 5.2 Ergebnisse zur experimentellen Untersuchung der Brennstoffumwandlung 91 5.3 Zusammenfassung zu den experimentellen Untersuchungen 103 5.4 Optimierungspotential zum Turbo-Compound-Concept 104 6 Betrachtungen zu Transport- und Entsorgungskosten 110 7 Zusammenfassung und Ausblick 114 Anhang 120 A.1 Zum Stand der Technik 120 A.1.1 Übersicht realisierter KWK-Anlagen im dezentralen Bereich 120 A.1.2 Möglichkeiten zur Wasserentfernung aus Klärschlamm 124 A.2 Erläuterungen Zum Bilanzierungsmodell 127 A.2.1 Stoff- und Energiebilanzen 127 A.2.2 Verzweigungs- und Sammelstellen in der Bilanz 128 A.2.3 Strom/Werteübergabe für Masse und Energie in Stromflussrichtung 129 A.2.4 Reaktionen und Reaktionsenthalpien 130 A.2.5 Vergleich der Vergasungsgaszusammensetzung je nach Berechnung 131 A.3 Brennstoffeigenschaften 134 A.3.1 Analysemethoden 134 A.3.2 Vergleich verschiedener Brennstoffe 134 A.4 Zu den experimentellen Ergebnissen der Brennstoffumwandlung 138 A.4.1 Betriebsart Verbrennung in der Wirbelschicht (λ>1) 138 A.4.2 Betriebsart Vergasung in der Wirbelschicht (λ<1) 140 A.4.3 Brennkammer der Versuchsanlage, Luftzahlen und Verweilzeiten 142 A.5 Zum Turbo-Compound-Concept 145 A.5.1 Daten des Versuchsanlagen-TCS 145 A.5.2 Weitere Bilanzierungsannahmen zum Optimierungspotential des Turbo-Compound-Concept 146 Literaturverzeichnis 148 / The objective of this work is the development of a process for a thermochemical conversion of biogenic input materials, especially residuals like sewage sludge. This process targets a decentralized application, i.e. a power range of 100 – 1.000 kW thermal input, and the provision of electrical power. Considering the state of the art, there is no process available for those requirements. This work analyzes the correlations concerning process engineering and combustible-specific requirements in order to derive a process which can be utilized for the pursued goal. This process mainly consists of two stages – first, a fuel conversion (Thermo-Chemical Conversion) under 3 bar pressure abs. and, second, a power process (Turbo-Compound-Concept). The first stage of the process is composed of a pressurized fluidized bed gasification to convert the combustibles, a cyclone for dust separation and a downstream pressurized combustion chamber for the combustion of the gasification gas. For the provision of electrical energy, the second stage contains a turbo-compound-concept as power process which is thermodynamically identical to the gas turbine process. Compared to the state of the art the process is characterized by its suitability for a broad range of combustibles, especially for „difficult“ input materials (e.g. low ash melting temperature). This is achieved by the staged design of the process, the utilized devices and the durability of the chosen engine. The deduced process is analyzed by using energy, mass and material balances for the reference combustibles sewage sludge and woodchips, regarding their thermodynamic potential (loss-free), as well as realistically anticipated performance data considering major losses. In several process variations, the waste heat utilization for preheating the reaction gas and pretreating sewage sludge, the application of an inverted gas turbine process and the increase of the turbine inlet temperature are analyzed. The results show an electrical net efficiency of about 9 % for the standard process version using sewage sludge and in consideration of losses. This can be increased up to 18 % by an economizer for preheating the reaction gas and by raising the turbine inlet temperature. Furthermore, it is shown especially for sewage sludge that the waste heat of the process is able to cover the heat demand for the pretreatment. The result of the inverse gas turbine process as comparative process points out, though, that the auxiliary power consumption exceeds the gross electrical power and, therefore, no electrical net output can be provided. As a practical step towards developing and realizing the process, a pilot-scaled test plant is designed and put into operation. Within the set goal, the main focus concerning the experimental investigations is on the first process stage, the conversion of combustibles under close-to-atmospheric conditions, without taking into account an optimization regarding NOx emissions yet. The experimental tests in this work aim to prove the functionality of the fuel conversion only. For the optimization of NOx emissions, sufficient options of primary measures are implemented at the test plant. Concerning the objective of this work, all tests were carried out successfully. The results show a stable operation of the fluidized bed inducing homogeneous progressions of temperatures and gasification gas compositions. With an ignition loss of only about 3 % by weight when using sewage sludge the ash analysis shows a better net burning rate compared to commercial large-scale plants for sewage sludge gasification. The successful examination of the first process stage, the combustible conversion, significantly contributed to the development and realization of the process as a whole. Furthermore, an optimization of NOx emissions as well as the coupling of the power process under nominal pressure conditions (3 bar abs.) need to be examined. Thereof it could become necessary to adapt the design of the turbine device and also to develop process control dependencies for a combined operation of both process stages. The pilot plant is approved for overpressure mode and, therefore, can be used for future tests of the second process stage. It is not necessary to scale the pilot plant for commercial application as it is designed for a nominal thermal input of 230 kW while operating under pressure.:Abstract I Kurzzusammenfassung III Danksagung V Formelzeichen IX Indizes X Abkürzungsverzeichnis XI Abbildungsverzeichnis XIII Tabellenverzeichnis XVI 1 Einleitung 1 1.1 Zielsetzung 1 1.2 Aufbau der Arbeit 1 1.3 Übergeordnete Relevanz für den Einsatzstoff Klärschlamm 2 2 Stand der Technik 3 2.1 Biogene Einsatzstoffe 3 2.2 Brennstoffvorbehandlung 4 2.2.1 Herstellung von Holzhackschnitzeln und Holzpellets 5 2.2.2 Klärschlammvorbehandlung mittels Faulung und Hydrothermaler Carbonisierung (HTC) 7 2.2.3 Klärschlammtrocknung mit Brüdenverdichtung 14 2.2.4 Zusammenfassung zur Brennstoffvorbehandlung 18 2.3 Vergasung biogener Einsatzstoffe 18 2.3.1 Bilanzierung eines Verfahrens mit Holzpellets 21 2.3.2 Bilanzierung eines Verfahrens mit Holzhackschnitzeln 25 2.3.3 Vergleich der zwei Beispielverfahren 28 2.3.4 Thermochemische Umwandlung von Klärschlamm 29 2.3.5 Zusammenfassung zum Stand der Technik von Vergasungsverfahren biogener Einsatzstoffe 30 3 Entwicklung des Verfahrens 31 3.1 Anforderungen an das Verfahren 31 3.2 Verfahrenshypothese 34 3.3 Herleitung des Verfahrens 36 3.3.1 Wahl des Kraftprozesses 36 3.3.2 Stufung des thermochemischen Umwandlungsverfahrens 40 3.3.3 Wahl der Apparate 42 3.4 Zusammenfassung zur Entwicklung des Verfahrens 45 4 Theoretische Untersuchung des Verfahrens 46 4.1 Bilanzierung des Verfahrens (Basisvariante) 46 4.1.1 Referenzbrennstoffe 48 4.1.2 Bilanzierungsmethode und Annahmen 49 4.1.3 Thermodynamisches Potential des Verfahrens 55 4.1.4 Verlustbehaftete Bilanzierung des Verfahrens 59 4.1.5 Detailergebnis zur Prozessberechnung des Turbo-Compound-Concept 65 4.2 Untersuchung von Verfahrensvarianten 67 4.2.1 Wärmerückgewinnung zur Reaktionsgasvorwärmung 67 4.2.2 Deckung des Energiebedarfs zur Brennstoffvorbehandlung 75 4.2.3 Inverser Gasturbinenprozess 78 4.3 Ergebniszusammenfassung der untersuchten Verfahrensvarianten 83 4.4 Einordnung des Verfahrens in den Stand der Technik 86 5 Experimentelle Untersuchungen 88 5.1 Versuchsanlage 88 5.2 Ergebnisse zur experimentellen Untersuchung der Brennstoffumwandlung 91 5.3 Zusammenfassung zu den experimentellen Untersuchungen 103 5.4 Optimierungspotential zum Turbo-Compound-Concept 104 6 Betrachtungen zu Transport- und Entsorgungskosten 110 7 Zusammenfassung und Ausblick 114 Anhang 120 A.1 Zum Stand der Technik 120 A.1.1 Übersicht realisierter KWK-Anlagen im dezentralen Bereich 120 A.1.2 Möglichkeiten zur Wasserentfernung aus Klärschlamm 124 A.2 Erläuterungen Zum Bilanzierungsmodell 127 A.2.1 Stoff- und Energiebilanzen 127 A.2.2 Verzweigungs- und Sammelstellen in der Bilanz 128 A.2.3 Strom/Werteübergabe für Masse und Energie in Stromflussrichtung 129 A.2.4 Reaktionen und Reaktionsenthalpien 130 A.2.5 Vergleich der Vergasungsgaszusammensetzung je nach Berechnung 131 A.3 Brennstoffeigenschaften 134 A.3.1 Analysemethoden 134 A.3.2 Vergleich verschiedener Brennstoffe 134 A.4 Zu den experimentellen Ergebnissen der Brennstoffumwandlung 138 A.4.1 Betriebsart Verbrennung in der Wirbelschicht (λ>1) 138 A.4.2 Betriebsart Vergasung in der Wirbelschicht (λ<1) 140 A.4.3 Brennkammer der Versuchsanlage, Luftzahlen und Verweilzeiten 142 A.5 Zum Turbo-Compound-Concept 145 A.5.1 Daten des Versuchsanlagen-TCS 145 A.5.2 Weitere Bilanzierungsannahmen zum Optimierungspotential des Turbo-Compound-Concept 146 Literaturverzeichnis 148
9

Untersuchungen zum Freisetzungsverhalten von Störkomponenten aus Energierohstoffen unter reduzierenden und oxidierenden Bedingungen

Hommel, Caroline 03 July 2023 (has links)
Die vorliegende Dissertationsschrift beschreibt Experimente zur Weiterentwicklung der Methode der elektrothermischen Verdampfung mit induktiv gekoppeltem Plasma und optischer Emissionsspektroskopie (ETV-ICP OES). Ziel ist die Analyse der Mobilisierung einzelner Elemente in Verbrennungsgasatmosphären, um so das Verschmutzungs- und Verschlackungspotential von Energierohstoffen abschätzen zu können. Zur Simulation der Atmosphäre wird Sauerstoff zum Argon-Gasstrom der Verdampfungseinheit in verschiedenen Verhältnissen zugesetzt, weshalb einige Bauteile der ETV und alle Methodenparameter angepasst werden müssen. Der Einfluss der Gasatmosphäre sowie des Temperaturprogrammes auf die Freisetzung der Elemente wird anhand von drei Kohlen unterschiedlicher Inkohlung und Mineralstoffanteile untersucht und die Analysenmethode dementsprechend optimiert. Im Anschluss erfolgt die Anwendung der entwickelten Methode auf acht Argonne Premium Kohlen sowie auf verschiedene Biomassen und Klärschlämme.:1 Motivation und Aufgabenstellung 12 2 Stand der Technik 15 2.1 Energierohstoffe 15 2.2 Ansatzbildung und Korrosion im Kraftwerk 17 2.2.1 Ansatzbildungsmechanismen 17 2.2.2 Korrosion 20 2.2.3 Freisetzung von Störkomponenten 21 2.2.3.1 Schwefel 21 2.2.3.2 Chlor 21 2.2.3.3 Alkalien 22 2.2.4 Analysemethoden zur Ermittlung der Freisetzung von Störkomponenten 23 3 Eingesetzte Methoden und Parameter 27 3.1 ETV-ICP OES 27 3.2 Thermodynamische Gleichgewichtsberechnungen 31 4 Methodenentwicklung modifizierte ETV-ICP OES 33 4.1 Anpassung des ETV-Systems an simulierte Prozessbedingungen 34 4.1.1 Auswahl der Gasatmosphären 36 4.1.2 Vergleich Standardrohr und SiC-beschichtetes Rohr 38 4.1.3 Einfluss der Beschichtung der Probentiegel 39 4.1.4 Fazit 42 4.2 Temperaturprogramm 43 4.3 Linienauswahl 44 4.4 Kalibration für quantitative Analysen 46 4.5 Datenbearbeitung 49 4.5.1 Korrekturfaktor für Massenbilanz 50 4.5.2 Argon-Korrektur 51 4.5.3 Intensität und Freisetzungsverlauf 53 4.5.4 Zusammenfassung notwendiger Datenbearbeitung 56 4.6 Einfluss der modifizierten Methode auf die Kohlematrix 56 4.6.1 Probenauswahl und Charakterisierung 57 4.6.1.1 Bestimmung der Bindungsformen von Kalium und Natrium 59 4.6.2 Elementfreisetzungsverhalten – Analyse der Kohleproben 64 4.6.2.1 Mineralreiche Kohle – 4419 64 4.6.2.2 Mineralarme Braunkohle – 3922 73 4.6.2.3 Steinkohlestandard – 1632d 81 4.6.2.4 Sonderfall Chlor 87 4.7 Fehlerbetrachtung 89 4.8 Zusammenfassung der Methodenentwicklung 92 5 Anwendung der Methode 96 5.1 Argonne Premium Kohlen 96 5.1.1 Kalium 98 5.1.2 Natrium 101 5.1.3 Schwefel 103 5.1.4 Zusammenfassung der Analysen an den APCs 106 5.2 Klärschlamm 106 5.2.1 Probenauswahl 107 5.2.2 Kalium 108 5.2.3 Natrium 111 5.2.4 Schwefel 113 5.2.5 Phosphor 115 5.2.6 Zusammenfassung der Klärschlammanalysen 118 5.3 Biomasse 118 5.3.1 Probencharakterisierung 119 5.3.2 Freisetzungsverhalten der Elemente 120 5.3.3 Zusammenfassung der Analysen an den Biomassen 123 5.4 Rückschlüsse der Ergebnisse auf reale Prozesse 124 6 Zusammenfassung und Ausblick 126 7 Anhang 130 7.1 Analysenmethoden zur Probencharakterisierung 130 7.1.1 Brennstoffanalyse 130 7.1.2 Röntgenfluoreszenzspektroskopie 131 7.1.3 Röntgendiffraktometrie 132 7.1.4 Thermische Analysen 134 7.1.5 Weitere Parameter für die FactSageTM-Berechnungen 135 7.2 Zusatzinformationen zur Methodenentwicklung 136 7.2.1 Methodenparameter 136 7.2.2 Probencharakterisierung 140 7.3 Zusatzinformationen zur Anwendung der modifizierten Methode 147 7.3.1 APC 147 7.3.2 Klärschlämme 148 8 Referenzen 150 9 Veröffentlichungsliste 160 10 Verzeichnisse 161 10.1 Abbildungsverzeichnis 161 10.2 Tabellenverzeichnis 166 10.3 Abkürzungsverzeichnis 168 / This dissertation describes the development of a method to analyze the mobilization of individual elements in combustion gas atmospheres with the help of electrothermal evaporation in combination with inductively coupled plasma optical emission spectros-copy (ETV-ICP OES) to estimate the pollution and slagging potential of energy feed-stocks. To simulate the atmosphere, oxygen is added to the argon gas stream of the evaporation unit in different ratios. To that end, some components of the ETV unit and all method parameters have to be adjusted. The influence of the gas atmosphere as well as the temperature program on the release of the elements is investigated on the basis of three coals of different degree of carbonization and mineral content and the analysis method is optimized accordingly. Subsequently, the method is applied to analyze eight Argonne Premium coals as well as various biomasses and sewage sludges.:1 Motivation und Aufgabenstellung 12 2 Stand der Technik 15 2.1 Energierohstoffe 15 2.2 Ansatzbildung und Korrosion im Kraftwerk 17 2.2.1 Ansatzbildungsmechanismen 17 2.2.2 Korrosion 20 2.2.3 Freisetzung von Störkomponenten 21 2.2.3.1 Schwefel 21 2.2.3.2 Chlor 21 2.2.3.3 Alkalien 22 2.2.4 Analysemethoden zur Ermittlung der Freisetzung von Störkomponenten 23 3 Eingesetzte Methoden und Parameter 27 3.1 ETV-ICP OES 27 3.2 Thermodynamische Gleichgewichtsberechnungen 31 4 Methodenentwicklung modifizierte ETV-ICP OES 33 4.1 Anpassung des ETV-Systems an simulierte Prozessbedingungen 34 4.1.1 Auswahl der Gasatmosphären 36 4.1.2 Vergleich Standardrohr und SiC-beschichtetes Rohr 38 4.1.3 Einfluss der Beschichtung der Probentiegel 39 4.1.4 Fazit 42 4.2 Temperaturprogramm 43 4.3 Linienauswahl 44 4.4 Kalibration für quantitative Analysen 46 4.5 Datenbearbeitung 49 4.5.1 Korrekturfaktor für Massenbilanz 50 4.5.2 Argon-Korrektur 51 4.5.3 Intensität und Freisetzungsverlauf 53 4.5.4 Zusammenfassung notwendiger Datenbearbeitung 56 4.6 Einfluss der modifizierten Methode auf die Kohlematrix 56 4.6.1 Probenauswahl und Charakterisierung 57 4.6.1.1 Bestimmung der Bindungsformen von Kalium und Natrium 59 4.6.2 Elementfreisetzungsverhalten – Analyse der Kohleproben 64 4.6.2.1 Mineralreiche Kohle – 4419 64 4.6.2.2 Mineralarme Braunkohle – 3922 73 4.6.2.3 Steinkohlestandard – 1632d 81 4.6.2.4 Sonderfall Chlor 87 4.7 Fehlerbetrachtung 89 4.8 Zusammenfassung der Methodenentwicklung 92 5 Anwendung der Methode 96 5.1 Argonne Premium Kohlen 96 5.1.1 Kalium 98 5.1.2 Natrium 101 5.1.3 Schwefel 103 5.1.4 Zusammenfassung der Analysen an den APCs 106 5.2 Klärschlamm 106 5.2.1 Probenauswahl 107 5.2.2 Kalium 108 5.2.3 Natrium 111 5.2.4 Schwefel 113 5.2.5 Phosphor 115 5.2.6 Zusammenfassung der Klärschlammanalysen 118 5.3 Biomasse 118 5.3.1 Probencharakterisierung 119 5.3.2 Freisetzungsverhalten der Elemente 120 5.3.3 Zusammenfassung der Analysen an den Biomassen 123 5.4 Rückschlüsse der Ergebnisse auf reale Prozesse 124 6 Zusammenfassung und Ausblick 126 7 Anhang 130 7.1 Analysenmethoden zur Probencharakterisierung 130 7.1.1 Brennstoffanalyse 130 7.1.2 Röntgenfluoreszenzspektroskopie 131 7.1.3 Röntgendiffraktometrie 132 7.1.4 Thermische Analysen 134 7.1.5 Weitere Parameter für die FactSageTM-Berechnungen 135 7.2 Zusatzinformationen zur Methodenentwicklung 136 7.2.1 Methodenparameter 136 7.2.2 Probencharakterisierung 140 7.3 Zusatzinformationen zur Anwendung der modifizierten Methode 147 7.3.1 APC 147 7.3.2 Klärschlämme 148 8 Referenzen 150 9 Veröffentlichungsliste 160 10 Verzeichnisse 161 10.1 Abbildungsverzeichnis 161 10.2 Tabellenverzeichnis 166 10.3 Abkürzungsverzeichnis 168
10

Phosphordüngewirkung von Klärschlämmen aus Klärwerken mit Phosphateliminierung durch Eisensalze / Phosphate fertilization effects of sewage sludges from waste water processing plants with phosphate elimination by iron salts

Abd El-Samie, Ihab Mohamed Farid 06 February 2003 (has links)
No description available.

Page generated in 0.053 seconds