471 |
Novel Designs for Broadband Slot Mobile Phone AntennaLin, Po-wei 22 June 2011 (has links)
In this thesis, two novel broadband slot mobile phone antenna designs respectively for penta-band WWAN operation and eight-band LTE/WWAN operation are presented. The antennas are suitable to be mounted near the bottom edge of the system ground plane of the mobile phone. Good radiation characteristics for the antennas are obtained, and the two antennas respectively occupy a small printed area of 50 ¡Ñ 4 mm2 and 53 ¡Ñ 4 mm2. The first design uses a C-shaped strip connected to the bottom edge of the system ground plane to make the structure of the system ground plane close to a symmetric shorted dipole antenna. This makes it promising to excite a chassis mode to enhance the operating bandwidth of the antenna. The second one uses a microstrip feedline having a chip-inductor-loaded branch. The novel microstrip feedline can lead to more uniform distribution of the electric fields excited in the slot such that enhanced bandwidth of the antenna¡¦s lower band is obtained. Further, since the chip inductor performs like a low-pass filter, the original bandwidth of the antenna¡¦s upper band is not affected. Additionaly, the impedance matching of the lower frequencies of the upper band can be improved, which enhances the upper-band bandwidth of the antenna. Effects of the user¡¦s head and hand on the proposed antenna are also studied, and the simulated SAR and HAC issues are also analyzed in this thesis.
|
472 |
Design of Miniaturized Printed Circuit Board Antennas for 802.11n MIMO ApplicationsTien, Mei 30 June 2011 (has links)
In rapid wireless communication technology development environment, antennas, the interface among many wireless communications, are an indispensable component for wireless systems. Miniaturization and functionality stability (high tolerance to environmental variations) of the antenna are fast becoming the design trends in research and development of wireless communication systems. They are also the main objectives of this thesis.
In the first part of this thesis, we designed two highly stable antennas, which can be used in notebook computers or tablet PCs. The antenna has self-balanced characteristics, where the environmental interference is minimized, in its performance/functionality and patterns. The first antenna design, which can be easily integrated into an RF front-end board, employed capacitive coupling, differential feed printed loop configurations. Comparing to the existing differentially fed antenna design, our designs are much more miniaturized: the antenna size was 13 mm ¡Ñ 27 mm, the ground size was 4.5 mm ¡Ñ 4.5 mm. Implemented on a low-cost FR4 board, the antenna reduced the leakage current formed on coaxial transmission line, due to the advantage of being differentially fed. The second antenna design, fed by coaxial cable (single-ended fed), and without a ground plane, excited only self-balanced modes. The radiation patterns of higher modes in this antenna design are complete and without side lobes. This antenna design also has wide bandwidth characteristics: at 2.4 GHz it had 380 MHz, and at 5.2 GHz it had 1270 MHz bandwidths of high tolerance (stability). The actual measurement validated our simulation results.
In the second part, MIMO antennas were designed for 802.11n wireless standards with maximum transfer rates of up to 300 Mbps. First, we designed two small single antennas, which were applied later in MIMO antenna designs. The size of our MIMO antenna designs was only 19 mm ¡Ñ 30.3 mm. In MIMO antenna designs, we employed two methods to increase the isolation between the two MIMO antennas: one manipulated the ground plane size, in which the isolation reached 18.9 dB; the other utilized a decoupling metal, where the overall isolation reached 24.6 dB in all of the operating frequencies, with the best isolation being 31.4 dB. The frequency of the coupling/decoupling for the decoupling metal can be adjusted independently; thus not affecting the original resonant frequency and the return loss of the two MIMO antennas. Actual measurements conducted in the microwave chamber (Reverberation Chamber) have verified the channel capacity were effectively increased, the total radiation efficiencies were about 60%, and the effective diversity gain was about 7dB. The MIMO antenna designs can practically and easily applied in the USB dongles.
|
473 |
Analytical Techniques and Operational Perspectives for a Spherical Inverted-F AntennaRolando, David Lee 2010 December 1900 (has links)
The spherical inverted-F antenna (SIFA) is a relatively new conformal antenna
design that consists of a microstrip patch resonator on a spherical ground. The SIFA
resembles a planar inverted-F antenna (PIFA) that has been conformally recessed onto a
sphere. The basic design, simulation, and fabrication of a SIFA were recently reported.
The aim of this thesis is to provide a three-fold improvement to the study of the SIFA:
the fabrication of a dielectric-coated SIFA, a new analytical model based on the cavity
method, and the analysis of a randomly oriented SIFA’s operation in a remote
networking scenario.
A key improvement to the basic SIFA design is the addition of a lossy dielectric
coating to the outside of the sphere for purposes of impedance stability, bandwidth
control, and physical ruggedization. The first contribution of this thesis is the fabrication
of such a dielectric-coated SIFA. Two antennas are fabricated: a coated SIFA operating
at 400 MHz, and an uncoated SIFA operating at 1 GHz for comparison. Both SIFAs are
constructed of foam and copper tape; the coating is comprised of silicone rubber and carbon fiber. The fabricated designs perform with reasonable agreement to
corresponding simulations, providing a basic proof of concept for the coated SIFA.
The SIFA was previously studied analytically using a transmission line model.
The second task of this thesis is to present a new model using the cavity method, as
employed in microstrip patches. The SIFA cavity model uses a curvilinear coordinate
system appropriate to the antenna’s unique geometry and is able to predict the antenna’s
performance more accurately than the transmission line model.
The final portion of this thesis examines the performance of the SIFA in a remote
network scenario. Specifically, a line-of-sight link between two SIFAs operating in the
presence of a lossy dielectric ground is simulated assuming that each SIFA is randomly
oriented above the ground. This analysis is performed for both uncoated and coated
SIFAs. A statistical analysis of the impedance match, efficiency, and power transfer
between these antennas for all possible orientations is presented that demonstrates a
design tradeoff between efficiency and predictability.
|
474 |
NOVEL PLANAR ANTENNA DESIGNS FOR DUAL-BAND OR MULTI-BAND WIRELWSS COMMUNICATIONSLee, Gwo-yun 27 May 2004 (has links)
This paper proposes novel PIFA and monopole designs for dual-band or multi-band wireless communications, especially for mobile phones and CF (compact flash) card. The dual-frequency designs for mobile phone mainly utilize one or more metal branch strips to excite two resonant modes. By tuning the dimensions of branch strips, the ratio of the antenna¡¦s first two resonant frequencies can be achieved to be about 2.0, which makes it very promising for 900/1800 MHz operations. In addition, the broadband and quad-band (AMPS/GSM/DCS/PCS) designs for mobile phone application are also proposed. The broadband antenna design, unlike the above-mentioned dual-frequency designs for operating at two separate resonant modes, is more suitable to cover several nearby communication bands (DCS/PCS/UMTS/WLAN 2.45 GHz). The quad-band antenna design utilizes a £k-shape matching bridge to achieve a wider bandwidth both in lower and higher bands. For CF Card application, the triangular chip antenna having one longer and one shorter strip lines can generate the lower and higher modes covering the WLAN 2.4 and WLAN 5.2/5.8 GHz bands. All the antenna designs proposed are very promising to be concealed within the housing of the mobile phones or CF card.
|
475 |
A Study of the Effects of the Ground Plane and the Phase Center on the LPDA Antenna FactorChang, Chih-Hao 29 July 2004 (has links)
Abstract
Whether an Open Area Test Site (OATS) is qualified is based on the Normalized Site Attenuation (NSA). The purpose is to eliminate the influence of Antenna Factor (AF). Usually the AF provided by the manufacturer adopts the Standard Site Method (SSM) and is quoted from measurements at a 10-m range. In practice, the AF varies with the measurement conditions. This uncertainly will translate into error in NSA measurements. Currently radiated electromagnetic interference measurement mostly adopts the broadband antennas, and LPDA is one of the antennas used extensively. However, the AF provided by the manufacturer does not consider shifts in the phase center of LPDA with frequency. In the meantime the radiation pattern of LPDA is different from that of a short dipole. The investigation of this thesis will focus on these two parts.
In determining the phase center of LPDA antenna we adopt the average shift of phase center to improve the AF. The numerical simulation results show that such an arrangement can result in improvement. We also use the method of PCPM (Phase Center and Pattern Matching) to modify the AF under different conditions of measurement when a ground plane is present. Our study, by using the numerical simulation and measurement, shows that this indeed improves the variation of AF over that obtained by SSM. In addition, efforts are also made to have a detailed discussion in mutually coupling effects between the LPDA antenna and the ground plane, in order to distinguish the impact on AF due to the coupling of the LPDA antenna and its image. Our numerical simulation results indicate that it does not have a significant effect.
|
476 |
Dual Wideband Planar Monopole Antennas for Wireless Network ApplicationsPan, Chien-Yuan 18 July 2007 (has links)
This dissertation presents four dual-band printed monopole antennas. There are three printed monopole antennas operating in 2.4 GHz and 5.2/5.8 GHz WLAN bands, and a dual wideband printed monopole operating applies in 2.4/5.2/5.8 GHz WLAN bands and 2.5/3.5/5.5 GHz WiMAX bands. The proposed antennas mainly use two approaches to achieve dual-band and dual wideband operations. The first method uses two different resonant paths in radiating monopole to excite two desired operating frequencies. The proposed configuration using the first method is a printed G-shaped monopole antenna. The second method places the conductor-backed plane on the other side of the radiated monopole to perturb its resonant behaviors for enhancing impedance bandwidth. Three configurations using the second method are proposed. The one with the best wideband performance is a printed rectangular monopole antenna with a trapezoid conductor-backed plane. Measured results for the proposed antennas show satisfactory performances and good agreement with the simulated results.
|
477 |
The Electrical Characteristics Of Antennas In Their Operational EnvironmentAfacan, Gonenc 01 December 2007 (has links) (PDF)
This thesis investigates the variations of electrical properties of linear antennas mounted on certain platforms, depending on the physical properties of that platform. In this respect, related basic antenna simulations, electromagnetic simulations from primitive to complex models of airframes, and scale model measurements were used.
Firstly, electrical properties of monopoles at known environment were examined and basic analyses were performed via an electromagnetic simulation tool, named CST Microwave Studio® / . In addition, important aspects of simulation tool were investigated.
Then, an F-4 aircraft model was used to observe the electrical characteristics of antennas mounted on it. Using 3D model of F-4 aircraft, realistic antenna placement points were assigned and monopoles were attached to those points. Alternatively, a simplified F-4 model was also used and for two different models, identical simulations were done, followed by accuracy and performance analysis between the results obtained from simplified and exact models. As the outcome of these simulations, certain parameters like impedance, antenna-to-antenna coupling and radiation pattern values were examined. Additionally, change in antennas&rsquo / electrical characteristics due to their position over the airframe was investigated.
In addition, a 1:10 down-scaled and copper-plated F-4 aircraft model was obtained and equipped with identical antennas. By using the measurements done on this scale model, antenna-to-antenna coupling results of MWS® / were verified by measurements. Finally, advantages and disadvantages of using electromagnetic simulation tools and scale model measurements for such antenna studies were discussed.
|
478 |
Some practical planar antenna designs for wireless communicationWu, Jian-Yi 02 June 2001 (has links)
In this paper, at the beginning, we focused our studies on the practical planar antenna designs for wireless communication. We also proposed several antenna designs operating at the widely used bands, such as the ISM, GSM, GPS, 3G bands and their combinations. For the antenna designs at these bands, the circularly polarized wide slot antenna and planar monopole antenna with the conducting plate loading for ISM band application, shorted stacked mircostrip antenna for 3G band application, and the low cost high gain 8Í8 stacked patch array for dual ISM band application have been presented. To provide mobile communication and the accurate position of the user as well, the GSM/GPS dual-band antenna suitable for vehicle application is presented. Finally, the GSM/ISM dual-band antenna designed for the personal communication and wireless local area network is also shown. The performance we have achieved in these antenna designs not only satisfy the specific requirements of the system, but also show good antenna pattern, and gain.
|
479 |
Novel Designs of Planar Antennas Including the Feed NetworkChiou, Tzung-Wern 29 March 2002 (has links)
Novel designs of planar antennas including the feed network for improving the antenna performance improvement (CP axial-ratio bandwidth, XPL, port decoupling for dual-polarized operation, and harmonic control) or achieving dual-band operation are presented. This thesis, comprises five sections. Firstly, for obtaining broadband CP designs, the Wilkinson power divider and branch-line coupler are used. The 3-dB axial ratio CP bandwidths of all proposed antennas are larger than 30%. Secondly, the dual broadband patch antennas including a stopband network are proposed. Thirdly, the dual-polarized patch antenna with high XPL and isolation between two ports by using a Wilkinson power divider with a 180¢X phase shift between its two ports is proposed. Fourthly, the dual-band and dual-polarized patch antenna suitable for base-station antenna applications for mobile communications systems is studied. Finally, the harmonic control study of a square microstrip antenna is presented.
|
480 |
Broadband Dual-Polarized Patch Antenna DesignsTung, Hao-Chun 07 May 2003 (has links)
Several broadband dual-polarized patch antenna designs are presented and studied. Good isolation (< ¡V30 dB) between the two feeding ports of the proposed broadband dual-polarized patch antenna has been obtained. This dissertation reports four different innovative designs. Firstly, a new design of the aperture-coupled patch antenna with modified H-shaped coupling slots for achieving dual-polarized radiation with high isolation over a wide bandwidth is studied. Secondly, Optimized feeding of the dual-polarized aperture-coupled patch antenna with H-shaped coupling slots for achieving highly decoupled feeding ports is experimentally investigated. Thirdly, an aperture-coupled patch antenna with a cross slot for compact dual-polarized operation in the 1800-MHz band suitable for applications in personal communication system is presented. Finally, new designs of the broadband dual-polarized patch antenna with hybrid feeds suitable for DCS base-station application are proposed.
|
Page generated in 0.0695 seconds