Spelling suggestions: "subject:"anthropogenic"" "subject:"anthropogenically""
1 |
Die Auswirkung steigender atmosphärischer CO2-Konzentrationen auf die Flüsse der Klimaspurengase N2O und CH4 in einem GrünlandökosystemKammann, Claudia. January 2001 (has links)
Giessen, Universiẗat, Diss., 2001. / Dateiformat: tar.gz, Dateien im PDF-Format.
|
2 |
Zur Bedeutung von Stickstoff für den CO2-DüngeeffektKattge, Jens. January 2002 (has links) (PDF)
Giessen, Universiẗat, Diss., 2002.
|
3 |
Globalisierung von Klimapolitik und der zugrundeliegende Naturbegriff : am Beispiel der Klimarahmenkonvention der Vereinten Nationen und unter besonderer Berücksichtigung der Rolle der Entwicklungsländer /Hespelt, Sonja Katerina, January 2000 (has links)
Thesis (Master).
|
4 |
Entwicklung und Vergleich von Gewichtungsmetriken zur Analyse probabilistischer Klimaprojektionen aktueller Modellensembles / Development and comparison of metrics for probabilistic climate change projections of state-of-the-art climate modelsRing, Christoph January 2018 (has links) (PDF)
Der anthropogene Klimawandel ist eine der größten Herausforderungen des 21. Jahrhunderts. Eine Hauptschwierigkeit liegt dabei in der Unsicherheit bezüglich der regionalen Änderung von Niederschlag und Temperatur. Hierdurch wird die Entwicklung geeigneter Anpassungsstrategien deutlich erschwert.
In der vorliegenden Arbeit werden vier Evaluationsansätze mit insgesamt 13 Metriken für aktuelle globale (zwei Generationen) und regionale Klimamodelle entwickelt und verglichen, um anschließend eine Analyse der Projektionsunsicherheit vorzunehmen. Basierend auf den erstellten Modellbewertungen werden durch Gewichtung Aussagen über den Unsicherheitsbereich des zukünftigen Klimas getroffen. Die Evaluation der Modelle wird im Mittelmeerraum sowie in acht Unterregionen durchgeführt. Dabei wird der saisonale Trend von Temperatur und Niederschlag im Evaluationszeitraum 1960–2009 ausgewertet. Zusätzlich wird für bestimmte Metriken jeweils das klimatologische Mittel oder die harmonischen Zeitreiheneigenschaften evaluiert. Abschließend werden zum Test der Übertragbarkeit der Ergebnisse neben den Hauptuntersuchungsgebieten sechs global verteilte Regionen untersucht. Außerdem wird die zeitliche Konsistenz durch Analyse eines zweiten, leicht versetzten Evaluationszeitraums behandelt, sowie die Abhängigkeit der Modellbewertungen von verschiedenen Referenzdaten mit Hilfe von insgesamt drei Referenzdatensätzen untersucht.
Die Ergebnisse legen nahe, dass nahezu alle Metriken zur Modellevaluierung geeignet sind. Die Auswertung unterschiedlicher Variablen und Regionen erzeugt Modellbewertungen, die sich in den Kontext aktueller Forschungsergebnisse einfügen. So wurde die Leistung der globalen Klimamodelle der neusten Generation (2013) im Vergleich zur Vorgängergeneration (2007) im Schnitt ähnlich hoch bzw. in vielen Situationen auch stärker eingeordnet. Ein durchweg bestes Modell konnte nicht festgestellt werden. Der Großteil der entwickelten Metriken zeigt für ähnliche Situationen übereinstimmende Modellbewertungen. Bei der Gewichtung hat sich der Niederschlag als besonders geeignet herausgestellt. Grund hierfür sind die im Schnitt deutlichen Unterschiede der Modellleistungen in Zusammenhang mit einer geringeren Simulationsgüte. Umgekehrt zeigen die Metriken für die Modelle der Temperatur allgemein überwiegend hohe Evaluationsergebnisse, wodurch nur wenig Informationsgewinn durch Gewichtung erreicht werden kann. Während die Metriken gut für unterschiedliche Regionen und Skalenniveaus verwendet werden Evaluationszeiträume nicht grundsätzlich gegeben. Zusätzlich zeigen die Modellranglisten unterschiedlicher Regionen und Jahreszeiten häufig nur geringe Korrelationen. Dies gilt besonders für den Niederschlag. Bei der Temperatur sind hingegen leichte Übereinstimmungen auszumachen. Beim Vergleich der mittleren Ranglisten über alle Modellbewertungen und Situationen der Hauptregionen des Mittelmeerraums mit den Globalregionen besteht eine signifikante Korrelation von 0,39 für Temperatur, während sie für Niederschlag um null liegt. Dieses Ergebnis ist für alle drei verwendeten Referenzdatensätze im Mittelmeerraum gültig. So schwankt die Korrelation der Modellbewertungen des Niederschlags für unterschiedliche Referenzdatensätze immer um Null und die der Temperaturranglisten zwischen 0,36 und 0,44. Generell werden die Metriken als geeignete Evaluationswerkzeuge für Klimamodelle eingestuft. Daher können sie einen Beitrag zur Änderung des Unsicherheitsbereichs und damit zur Stärkung des Vertrauens in Klimaprojektionen leisten.
Die Abhängigkeit der Modellbewertungen von Region und Untersuchungszeitraum muss dabei jedoch berücksichtigt werden. So besitzt die Analyse der Konsistenz von Modellbewertungen sowie der Stärken und Schwächen der Klimamodelle großes Potential für folgende Studien, um das Vertrauen in Modellprojektionen weiter zu steigern. / Climate change is one of the major tasks of the 21st century. The uncertainty of precipitation and temperature change is considered as a main challenge in this context. Thus, the development of appropriate adaptation strategies is very difficult.
In this study, four climate model evaluation approaches with 13 metrics in total are developed and compared. Current global (two generations) and regional climate models are evaluated to assess projection uncertainty. Based on model performances, weighting is applied to future climate projections to estimate simulation uncertainty. The evaluations are performed in the Mediterranean and eight sub-regions. Seasonal trend of temperature and precipitation are evaluated for the period 1960–2009. For some metrics, the climatological mean and the spectra of the time series are evaluated as well. In addition, six globally distributed study areas are evaluated to test the metrics’ transferability. Further, temporal consistency is assessed by the evaluation of a second slightly shifted timeframe. Finally, three reference datasets are considered in order to analyse the dependence of the evaluation results between each other.
Results indicate that most metrics are suitable to evaluate climate models. Their application to different variables and regions generates reasonable model assessments which fit in the context of current publications in this field of research. In many situations, the results of the current model generation (2013) are similar or better compared to those of the last generation (2007). One single model with superior performance for all variables and situations cannot be found. Most metrics show similar estimations of performances for the same situations. Precipitation turned out to be more suitable for model weighting. Here, the differences between model weights are larger because of overall higher spread and lower model performances. Against this, there are mostly high performances on an equal level for simulations of temperature which lead to a minor added value of weighting. While metrics can easily be transferred and applied to different regions and scales, some evaluation results depend on the evaluated timeframe. Further, the model rankings for different regions and seasons show only minor correlations for most situations. This is particularly true for precipitation. However, for temperature there are some significant positive correlations. Comparing the mean ranking over all evaluation results of the main study areas of the Mediterranean with that of the globally distributed regions, there is a significant correlation of 0.39 for temperature and a correlation around zero for precipitation. The choice of reference dataset for the Mediterranean areas is subordinated in this context. For different reference datasets, the overall rankings show correlations around zero for precipitation while those for temperature are between 0.36 and 0.44.
Overall, the metrics are suitable for the evaluation of climate models. Thus, they offer promising contributions to improve the range of uncertainty and therefore to enhance the general confidence in climate projections. However, dependence of model assessments on the analysed region and evaluation timeframe has to be considered. Consequently, the analyses of consistency of model evaluations and of climate model strengths and weaknesses have great potential for future studies, to further enhance confidence in climate projections.
|
5 |
Migration im Kontext von Umwelteinflüssen und Klimawandel / Migration in Context of Environmental and Climate ChangeStreckel, Christian January 2013 (has links) (PDF)
Klimawandelbedingte bzw. potenziell klimawandelbedingte Umweltmigration ist ein sehr komplexes und breites Feld. Es existiert eine Fülle von Studien, die sich in ihrer Herangehensweise unterscheiden, weshalb hier ein Systematisierungsvorschlag aufgezeigt wird. Mittels einer an den Richtlinien der Grounded Theory orientierten Analyse wurden Studien auf zentrale gemeinsame Kategorien hin untersucht und als Modell präsentiert. Dieses stellt jedoch kein abgeschlossenes System dar, sondern dient durch seine Offenheit als Gerüst, das mit Ergebnissen aus weiteren Fallstudien gefestigt werden kann. / (Potentially) climate change-induced migration constitutes a complex and broad field of research. A multitude of studies exists with different approaches to the topic. Within this range of approaches, it is the aim of this research to make a proposal for a systematisation of the topic. By carrying out a Grounded Theory-oriented analysis, we screened case studies for common categories to provide a conceptual model. The result of the investigation is a framework which can be extended by findings of other case studies.
|
6 |
Regionale Niederschlagsänderungen in Namibia bei anthropogen verstärktem Treibhauseffekt / Regional rainfall changes in Namibia under conditions of man-made enhanced greenhouse warmingBeyer, Ulrike January 2001 (has links) (PDF)
Diese Dissertation präsentiert Ergebnisse regionaler Niederschlagsabschätzungen für Namibia bei anthropogen verstärktem Treibhauseffekt, die mit der Methode des Statistischen Downscaling erzielt wurden. Über statistische Transferfunktionen werden Beziehungen zwischen großskaliger atmosphärischer Zirkulation und Namibischen Sommerregen aufgestellt. Dazu werden in einer 30-jährigen Kalibrierungsperiode Hauptkomponenten von Geopotentiellen Höhen verschiedener atmosphärischer Niveaus (300, 500, 1000hPa) mit den Niederschlagsmonatssummen (November bis März) von 84 Namibischen Stationen durch multiple Regressionsanalysen verknüpft, die für jede Station oder alternativ für Gitternetzniederschlagsdaten berechnet werden. Nach der Verifikation der statistischen Zusammenhänge in einem unabhängigen Zeitraum werden Regressionsmodelle jener Stationen bzw. Gitterpunkte selektiert, die mit signifikanten Korrelationen von r>0.4 zwischen beobachteten und modellierten Werten ausreichende Qualität garantieren. Diese Modelle werden eingesetzt, um unter Verwendung simulierter ECHAM3-T42 und ECHAM4tr-T42 Geopotentialdaten den lokalen Niederschlag für die jeweiligen Treibhauseffekt-Szenarien abzuschätzen. Als zusätzliche Methode, um die großskalige atmosphärische Zirkulation mit lokalen Stationsdaten zu verknüpfen, werden kanonische Korrelationsanalysen durchgeführt. Unabhängig von der Verfahrensweise resultieren für Klimabedingungen dreifacher bzw. transient ansteigender CO2-Konzentrationen im Vergleich zu einem Referenzzeitraum (1961-90) zunehmende Niederschläge in den nördlichen und östlichen Teilen Namibias von Dezember bis Februar. In den südlichen und südwestlichen Regionen sind von November bis Januar geringe Abnahmen zu verzeichnen. Die Abschätzungen für März zeigen einen deutlichen Rückgang der Niederschläge in ganz Namibia. Diese Ergebnisse weisen auf eine intensivierte, akzentuiertere Regenzeit hin, auch wenn die Gesamtmenge der Niederschläge unter Bedingungen des anthropogen verstärkten Treibhauseffekts mehr oder weniger gleich bleibt. Daher ist es von besonderer Bedeutung, die Abschätzungen der Niederschlagsänderungen auf monatlicher Ebene durchzuführen. Weitere Untersuchungen beinhalten die Trennung thermischer und dynamischer Effekte in den zur Abschätzung herangezogenen ECHAM3 und ECHAM4 Zirkulationsdaten. Durch die globale Erwärmung kommt es zu einer Anhebung der Geopotentiellen Höhen der Treibhauseffekt-Szenarien. Durch die Korrektur des Uplifting-Prozesses werden dynamisch induzierte Auswirkungen auf das Niederschlagsgeschehen erfasst. Áus der Verwendung uplifting-korrigierter Geopotentialdaten als Prädiktoren in der Downscaling-Prozedur resultieren sowohl im positiven als auch negativen Bereich geringere Änderungsraten in den Abschätzungsergebnissen. Ohne Zweifel reagiert das Klimasystem auf den anthropogen verstärkten Treibhauseffekt. In Bezug auf zukünftige Namibische Sommerregen ist es von besonderer Bedeutung die Auswirkungen des Treibhauseffekts regional und temporal zu differenzieren. / This thesis presents results of regional rainfall assessments in Namibia, under conditions of man-made enhanced greenhouse warming. The results are obtained by statistical downscaling procedures. Relations between large-scale atmospheric circulation and Namibian summer rainfall are established by statistical transfer functions. For this purpose, principle components of geopotential heights of different atmospheric levels (300, 500, 1000hPa) and monthly rainfall data of 84 Namibian stations are linked by stepwise multiple regression analyses for every station, or alternatively for gridded rainfall data. The analyses were done on a monthly basis (November – March) during a 30-year calibration period. After verifying these statistical relations in an independent period, stations, or grids, with regression models of sufficient quality (significant correlation r>0.4 between observed and modeled data) are selected and used to assess local rainfall for greenhouse gas-scenarios from simulated ECHAM3-T42 and ECHAM4tr-T42 geopotential height data. As additional method to connect large scale circulation features with local station rainfall data, canonical correlation analyses are applied. Independent of the procedure, results for climate conditions of threefold respectively transient increase in CO2-concentrations, compared to a reference period (1961-90), show an increase of rainfall in northern and eastern parts of Namibia for December to February. Slight decreases in southern and southwestern regions from November to January are seen. Assessments for March indicate a distinct decrease over the whole country. These findings point to an intensified, more accentuated rainy season, however, the amount of rainfall remains more or less the same under conditions of enhanced greenhouse warming. Therefore it is of special importance to assess rainfall changes on a monthly basis. Further investigations consist of the separation of thermal and dynamical effects in ECHAM3 and ECHAM4 circulation data. Global warming produces a thermal uplifting of the geopotential heights used in climate change scenarios. By correction of this uplifting process, dynamical induced effects of rainfall events are captured. The use of uplifting corrected geopotential heights as predictors in the downscaling procedure in general leads to smaller changes of rainfall in the assessment results, both in positive and negative range. There is no doubt that the climate system reacts to man-made enhanced greenhouse warming. With regard to future Namibian summer rainfall, it is important to differentiate the effects of greenhouse warming on a regional and temporal scale.
|
7 |
Förderliche und hinderliche Faktoren bei der Implementierung von Lehrangeboten zu Planetarer Gesundheit (Klima, Umwelt und Gesundheit) an medizinischen Fakultäten in Deutschland / Supporting and hindering factors for the implementation of planetary health education (climate, environment and health) at medical faculties in GermanySimon, Johanna Marie Elisabeth January 2025 (has links) (PDF)
Der Klimawandel und weitere anthropogene Umweltveränderungen haben schon heute einen gefährdenden Einfluss auf die menschliche Gesundheit, der in den kommenden Jahren weiter zunehmen wird. Mediziner:innen nehmen aufgrund des ihnen entgegengebrachten Vertrauens eine Schlüsselrolle bezüglich der Kommunikation zu transformativem Wandel in der Gesellschaft ein. An medizinischen Fakultäten ist, trotz einiger Wahlfächer zu Planetarer Gesundheit, die curriculare Implementierung weiterhin unzureichend.
Diese Dissertation hatte daher zum Ziel, durch qualitative Interviews von Schlüsselpersonen in der Lehre, förderliche und hinderliche Faktoren bei der Implementierung von Lehre zu Planetarer Gesundheit (Planetary Health Education, PHE) und Charakteristika guter PHE zu erfassen, um deren zukünftige Umsetzung und Verankerung zu erleichtern.
Im Sommer 2021 wurden qualitative Interviews mit Dozierenden, dozierenden Studierenden und Studiendekan:innen von medizinischen Fakultäten in ganz Deutschland geführt. Rekrutiert wurden die Teilnehmenden vorwiegend über PHE-Netzwerke und durch das Schneeballprinzip. Die Auswertung erfolgte im Sinne einer inhaltlich strukturierten qualitativen Datenanalyse nach Kuckartz.
Es wurden 17 Interviews mit insgesamt 20 Teilnehmenden geführt. Beeinflussende Faktoren bei der Implementierung von PHE sahen die Teilnehmenden in der medizinischen Fakultät und außerhalb in Kliniken und Universitäten. Einstellungen zu und Sichtweisen auf PHE betreffen alle diese Bereiche. Als Charakteristika guter PHE wurden inter- und transdisziplinäre Lehrkonzepte, innovative, praxisorientierte und bewährte didaktische Methoden, die Auseinandersetzung mit ethischen Dimensionen, Verantwortung, Reflexion und Resilienzstärkung genannt. Die Implementierung ins Pflichtcurriculum wird als essenziell angesehen. Studierende spielen in Bezug auf die Implementierung und konkrete Umsetzung von PHE eine wichtige Rolle.
Die ermittelten Faktoren und Charakteristika können als wichtige Grundlage bei der weiteren Planung und Umsetzung von PHE im medizinischen Curriculum dienen. Diese ist unerlässlich, um die zukünftigen Ärztinnen und Ärzte mit Fähigkeiten auszustatten, die ihnen helfen, kommende gesundheitliche Herausforderungen zu bewältigen. / Climate change and other anthropogenic environmental changes are already having a dangerous impact on human health today, which will continue to increase in the coming years. Due to the trust put in them, physicians play a key role in communicating transformative change in society. At medical faculties, despite some electives on planetary health, the curricular implementation is still insufficient.
This dissertation therefore aimed to identify supporting and hindering factors for the implementation of planetary health education (PHE) and characteristics of high-quality PHE through qualitative interviews with key persons in teaching in order to facilitate its future implementation and integration.
In summer 2021, qualitative interviews were conducted with faculty members, teaching students and study deans from medical faculties throughout Germany. Participants were mainly recruited via PHE networks and through snowball sampling. The evaluation was conducted according to a content-structured qualitative data analysis based on Kuckartz.
The participants considered factors influencing the implementation of PHE to be within the medical faculty and outside in clinics and universities. Attitudes towards and perspectives on PHE affect all of these areas. Inter- and transdisciplinary teaching concepts, innovative, practice-oriented and proven didactic methods, addressing ethical dimensions, responsibility, reflection and strengthening resilience were named as characteristics of high-quality PHE. Implementation in the mandatory curriculum is seen as essential. Students play an important role in the implementation and realization of PHE.
The factors and characteristics identified can provide an important base for the future planning and implementation of PHE in medical curricula. This is essential in order to prepare future doctors with skills to help them meet future health challenges.
|
8 |
Alltagsbilder des Klimawandels : zum Klimabewusstsein in Deutschland /Weber, Melanie. January 2008 (has links)
Zugl.: Lüneburg, Universiẗat, Diss., 2008.
|
9 |
Klimaänderung und Tourismus : Klimafolgenforschung am Beispiel des Wintertourismus in den Schweizer Alpen /Abegg, Bruno. January 1900 (has links)
Zugl. Diss. Phil. II Zürich, 1996. / Ex. commercial de la thèse de Zürich, Phil., 1996. Projektschlussbericht im Rahmen des Nationalen Forschungsprogrammes "Klimaänderungen und Naturkatastrophen", NFP 31. Literaturverz.
|
10 |
Bewertung und Auswirkungen der Simulationsgüte führender Klimamoden in einem Multi-Modell Ensemble / Evaluation and effects of the simulation quality of leading climate modes in a multi-model ensemblePollinger, Felix January 2013 (has links) (PDF)
Der rezente und zukünftige Anstieg der atmosphärischen Treibhausgaskonzentration bedeutet für das terrestrische Klimasystem einen grundlegenden Wandel, der für die globale Gesellschaft schwer zu bewältigende Aufgaben und Herausforderungen bereit hält. Eine effektive, rühzeitige Anpassung an diesen Klimawandel profitiert dabei enorm von möglichst genauen Abschätzungen künftiger Klimaänderungen.
Das geeignete Werkzeug hierfür sind Gekoppelte Atmosphäre Ozean Modelle (AOGCMs). Für solche Fragestellungen müssen allerdings weitreichende Annahmen über die zukünftigen klimarelevanten Randbedingungen getroffen werden. Individuelle Fehler dieser Klimamodelle, die aus der nicht perfekten Abbildung der realen Verhältnisse und Prozesse resultieren, erhöhen die Unsicherheit langfristiger Klimaprojektionen. So unterscheiden sich die Aussagen verschiedener AOGCMs im Hinblick auf den zukünftigen Klimawandel insbesondere bei regionaler Betrachtung, deutlich. Als Absicherung gegen Modellfehler werden üblicherweise die Ergebnisse mehrerer AOGCMs, eines Ensembles an Modellen, kombiniert. Um die Abschätzung des Klimawandels zu präzisieren, wird in der vorliegenden Arbeit der Versuch unternommen, eine Bewertung der Modellperformance der 24 AOGCMs, die an der dritten Phase des Vergleichsprojekts für gekoppelte Modelle (CMIP3) teilgenommen haben, zu erstellen. Auf dieser Basis wird dann eine nummerische Gewichtung für die Kombination des Ensembles erstellt. Zunächst werden die von den AOGCMs simulierten Klimatologien für einige
grundlegende Klimaelemente mit den betreffenden klimatologien verschiedener Beobachtungsdatensätze quantitativ abgeglichen. Ein wichtiger methodischer Aspekt
hierbei ist, dass auch die Unsicherheit der Beobachtungen, konkret Unterschiede zwischen verschiedenen Datensätzen, berücksichtigt werden. So zeigt sich, dass die Aussagen, die aus solchen Ansätzen resultieren, von zu vielen Unsicherheiten in den Referenzdaten beeinträchtigt werden, um generelle Aussagen zur Qualität von AOGCMs zu treffen. Die Nutzung der Köppen-Geiger Klassifikation offenbart jedoch, dass die prinzipielle Verteilung der bekannten Klimatypen im kompletten CMIP3 in vergleichbar guter Qualität reproduziert wird. Als Bewertungskriterium wird daher hier die Fähigkeit der AOGCMs die großskalige natürliche Klimavariabilität, konkret die hochkomplexe gekoppelte
El Niño-Southern Oscillation (ENSO), realistisch abzubilden herangezogen. Es kann anhand verschiedener Aspekte des ENSO-Phänomens gezeigt werden, dass nicht alle AOGCMs hierzu mit gleicher Realitätsnähe in der Lage sind. Dies steht im Gegensatz zu den dominierenden Klimamoden der Außertropen, die modellübergreifend überzeugend repräsentiert werden. Die wichtigsten Moden werden, in globaler Betrachtung, in verschiedenen Beobachtungsdaten über einen neuen Ansatz identifiziert. So können für einige bekannte Zirkulationsmuster neue Indexdefinitionen gewonnen werden, die sich sowohl als äquivalent zu den Standardverfahren erweisen und im Vergleich zu diesen zudem eine deutliche Reduzierung
des Rechenaufwandes bedeuten. Andere bekannte Moden werden dagegen als weniger bedeutsame, regionale Zirkulationsmuster eingestuft. Die hier vorgestellte
Methode zur Beurteilung der Simulation von ENSO ist in guter Übereinstimmung mit anderen Ansätzen, ebenso die daraus folgende Bewertung der gesamten Performance
der AOGCMs. Das Spektrum des Southern Oscillation-Index (SOI) stellt somit eine aussagekräftige Kenngröße der Modellqualität dar.
Die Unterschiede in der Fähigkeit, das ENSO-System abzubilden, erweisen sich als signifikante Unsicherheitsquelle im Hinblick auf die zukünftige Entwicklung einiger fundamentaler und bedeutsamer Klimagrößen, konkret der globalen Mitteltemperatur,
des SOIs selbst, sowie des indischen Monsuns. Ebenso zeigen sich signifikante Unterschiede für regionale Klimaänderungen zwischen zwei Teilensembles des CMIP3, die auf Grundlage der entwickelten Bewertungsfunktion eingeteilt werden. Jedoch sind diese Effekte im Allgemeinen nicht mit den Auswirkungen der
anthropogenen Klimaänderungssignale im Multi-Modell Ensemble vergleichbar, die für die meisten Klimagrößen in einem robusten multivariaten Ansatz detektiert und
quantifiziert werden können. Entsprechend sind die effektiven Klimaänderungen, die sich bei der Kombination aller Simulationen als grundlegende Aussage des
CMIP3 unter den speziellen Randbedingungen ergeben nahezu unabhängig davon, ob alle Läufe mit dem gleichen Einfluss berücksichtigt werden, oder ob die erstellte nummerische Gewichtung verwendet wird. Als eine wesentliche Begründung hierfür kann die Spannbreite der Entwicklung des ENSO-Systems identifiziert werden. Dies
bedeutet größere Schwankungen in den Ergebnissen der Modelle mit funktionierendem ENSO, was den Stellenwert der natürlichen Variabilität als Unsicherheitsquelle
in Fragen des Klimawandels unterstreicht. Sowohl bei Betrachtung der Teilensembles als auch der Gewichtung wirken sich dadurch gegenläufige Trends im SOI
ausgleichend auf die Entwicklung anderer Klimagrößen aus, was insbesondere bei letzterem Vorgehen signifikante mittlere Effekte des Ansatzes, verglichen mit der
Verwendung des üblichen arithmetischen Multi-Modell Mittelwert, verhindert. / The recent and future increase in atmospheric greenhouse gases will cause fundamental change in the terrestrial climate system, which will lead to enormous tasks and challenges for the global society. Effective and early adaptation to this climate change will benefit hugley from optimal possible estimates of future climate
change. Coupled atmosphere-ocean models (AOGCMs) are the appropriate tool for this. However, to tackle these questions, it is necessary to make far reaching
assumptions about the future climate-relevant boundary conditions. Furthermore there are individual errors in each climate model. These originate from flaws in
reproducing the real climate system and result in a further increase of uncertainty with regards to long-range climate projections. Hence, concering future climate
change, there are pronounced differences between the results of different AOGCMs, especially under a regional point of view. It is the usual approach to use a number
of AOGCMs and combine their results as a safety measure against the influence of such model errors. In this thesis, an attempt is made to develop a valuation
scheme and based on that a weighting scheme, for AOGCMs in order to narrow the range of climate change projections. The 24 models that were included in the
third phase of the coupled model intercomparsion project (CMIP3) are used for this purpose. First some fundamental climatologies simulated by the AOGCMs are quantitatively
compared to a number of observational data. An important methodological aspect of this approach is to explicitly address the uncertainty associated with the observational data. It is revealed that statements concerning the quality of climate models based on such hindcastig approaches might be flawed due to uncertainties
about observational data. However, the application of the Köppen-Geiger classification reveales that all considered AOGCMs are capable of reproducing the fundamental distribution of observed types of climate.
Thus, to evaluate the models, their ability to reproduce large-scale climate variability is chosen as the criterion. The focus is on one highly complex feature,
the coupled El Niño-Southern Oscillation. Addressing several aspects of this climate mode, it is demonstrated that there are AOGCMs that are less successful in doing so than others. In contrast, all models reproduce the most dominant extratropical climate modes in a satisfying manner. The decision which modes are the most important is made using a distinct approach considering several global sets of observational data. This way, it is possible to add new definitions for the time series of some well-known climate patterns, which proof to be equivalent to the standard definitions. Along with this, other popular modes are identified as less important regional patterns. The presented approach to assess the simulation of ENSO is in good agreement with other approaches, as well as the resulting rating of the overall model performance. The spectrum of the timeseries of the Southern Oscillation Index (SOI) can thus be regarded as a sound parameter of the quality of AOGCMs.
Differences in the ability to simulate a realistic ENSO-system prove to be a significant source of uncertainty with respect to the future development of some
fundamental and important climate parameters, namely the global near-surface air mean temperature, the SOI itself and the Indian monsoon. In addition, there are significant differences in the patterns of regional climate change as simulated by two ensembles, which are constituted according to the evaluation function
previously developed. However, these effects are overall not comparable to the multi-model ensembles’ anthropogenic induced climate change signals which can
be detected and quantified using a robust multi-variate approach. If all individual simulations following a specific emission scenario are combined, the resulting
climate change signals can be thought of as the fundamental message of CMIP3.
It appears to be quite a stable one, more or less unaffected by the use of the derived weighting scheme instead of the common approach to use equal weights
for all simulations. It is reasoned that this originates mainly from the range of trends in the SOI. Apparently, the group of models that seems to have a realistic
ENSO-system also shows greater variations in terms of effective climate change. This underlines the importance of natural climate variability as a major source
of uncertainty concerning climate change. For the SOI there are negative Trends in the multi-model ensemble as well as positive ones. Overall, these trends tend
to stabilize the development of other climate parameters when various AOGCMs are combined, whether the two distinguished parts of CMIP3 are analyzed or the
weighting scheme is applied. Especially in case of the latter method, this prevents significant effects on the mean change compared to the arithmetic multi-model mean.
|
Page generated in 0.068 seconds