• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predation On The Eastern Oyster Crassostrea Virginica On Intertidal Reefs Affected By Recreational Boating

Stiner, Jennifer 01 January 2006 (has links)
Widely regarded as a keystone species and ecosystem engineer, the eastern oyster Crassostrea virginica plays a vital role in estuarine environments. Complex, three-dimensional oyster reefs act as havens for biodiversity and contribute to ecological processes. Recently, concern for this resource has arisen in Mosquito Lagoon, Florida, the southernmost limit along the Atlantic coast for undisturbed, intertidal reefs of C. virginica. Since the 1990s, intense recreational boating activity has caused atypical dead margins (mounds of disarticulated shells) to emerge on the seaward edges of oyster reefs located along major navigational channels. Once dead margins are formed, little is known about their influence on biotic composition and interactions on oyster reefs. This study focused on the affect of dead margins on: (1) mobile species biodiversity and distribution, (2) reef architecture, and (3) the affect of structural variables on predation of juvenile oysters. To determine if dead margins influenced the biodiversity of mobile species on oyster reefs, lift nets (1 m2) were deployed within Mosquito Lagoon for one year (June 2004 - June 2005). These nets (5/site) were deployed on the back-reef areas of six reefs (3 reference reefs and 3 reefs containing dead margins). To simulate reef habitat, one and a half liters of live oysters were placed within each net. Lift nets were checked monthly and surveyed for all mobile species. The resulting data were assimilated into a species inventory containing 65 species of fishes, mollusks, crustaceans, worms, and echinoderms. The two most abundant species present on reefs in Mosquito Lagoon were the big-claw snapping shrimp Alpheus heterochaelis, a filter-feeder, and the flat-back mud crab Eurypanopeus herbstii, a predator of oyster spat. Contrary to expections, analyses of community metrics showed that dead margins did not significantly affect the biodiversity of back-reef areas on oyster reefs. Modified lift nets (0.25 m2) were placed on six different oyster reefs (3 reference reefs and 3 containing dead margins) to test if dead margins affected the distribution of mobile species inhabiting oyster reefs. Nine nets were arranged to cover three separate areas of each reef: the fore-reef (3 nets), mid-reef (3 nets), and back-reef (3 nets). Half a liter of oyster shells were placed inside each net. These nets were checked weekly, for five weeks and species richness, density, and biomass were recorded. Analyses revealed that all community metrics were significantly higher on reference reefs than reefs affected with dead margins. Further, a significant drop in all three metrics was seen on the mid-reef area of affected reefs. The absence of species on this area is hypothesized to be due to a lack of water, shade, and habitat complexity. To document architectural differences, two types of transects were run along five reference reefs and five reefs with dead margins. First, quadrat transects determined the percent of live oysters, the percent of shell clusters, topographic complexity (using chain links), and the angle of shells on each reef type. Transect lines were stretched parallel to the water line and covered all three reef areas (fore-reef, mid-reef, and back-reef). The results showed reference reefs to have approximately four-fold more live oysters, approximately twice as many shell clusters, and significantly greater topographic complexity. Numbers of live oysters and shell clusters were greater on the fore-reef and back-reef areas of both reef types. Second, laser transects were used to record reef profiles and the slope of fore-reef areas. Transect lines were stretched perpendicular to the water line and every 20 cm the distance between the lagoon bottom and reef top was measured. Vertical reef profiles and fore-reef slopes were significantly different between reference reefs and reefs with dead margins. Dead margins compressed reef widths, increased center peaks, and increased slopes on the fore-reef area by two-fold. Lastly, field experiments were conducted to determine the affect of dead margins on the vulnerability of oyster spat to predation. Structural variables (e.g. shell orientation, single versus shell clusters, reef slope) were manipulated and effects on oyster mortality were observed. Three predators were tested: the blue crab Callinectes sapidus, the common mud crab Panopeus herbstii, and the Atlantic oyster drill Urosalpinx cinerea. Structural variables did not have a significant influence on oyster mortality; however, a significant difference was established between predators. Panopeus herbstii consumed the most juvenile oysters, followed by U. cinerea and then C. sapidus. Together, these findings document ecological implications of dead margins on C. virginica reefs and reinforce the urgent need for enhanced regulations and restoration. If the intensity of recreational boating remains unregulated, dead margins will continue to increase. Thus, in order to maintain the diversity and productivity of Mosquito Lagoon, it is crucial to fully understand how dead margins alter the biogenic habitat and biotic communities of oyster reefs.
2

Seasonal Aggregations of the Florida Manatee (Trichechus manatus latirostris) in the Port Everglades and Intracoastal Regions of Fort Lauderdale, Florida.

Goldman, Jaime M. 01 December 2010 (has links)
The Florida manatee (Trichechus manatus latirostris), a subspecies of the West Indian manatee, is one of the most endangered marine mammals in United States waters. The Florida manatee is the only manatee that ranges into subtropical and temperate regions. During the winter months manatees adopt a “refuging strategy” where they aggregate at warm-water sources immediately following decreases in the ambient water temperature to below 20° C (68° F) in order to avoid cold stress syndrome (CSS). During the winter manatees aggregate in warm water refuges, including natural warm water springs and the effluent discharges of power plants. The purpose of this study was to determine the number of manatees that aggregate and utilize the waters of the Florida Power and Light (FPL) Plant in Port Everglades (PPE), Florida, its effluent canal, and the surrounding Intracoastal Waterway during the winter months. This study documents the importance of Port Everglades as a wintering refuge for the Florida manatee. This study analyzed the inverse relationship between the number of manatees present at a warm water effluent and water temperature. In this study data were collected over five manatee winter seasons (between 15 November and 31 March) from 1999-2004, from both boat-based and land-based surveys monitoring the presence of manatees in the effluent canal from the FPL electricity generating facility in Port Everglades, FL and the Intracoastal Waterway. Findings indicated that there was an inverse relationship between the number of manatees present and water temperature, where more manatees were present in cooler months, and fewer in warmer months. This study also analyzed the parameters of Catch per Unit Effort (CPUE) as well as heating degree-days and their effect on and relationship to the number of manatees present. The higher the heating degree-days number, the more severe, or cold, winter this indicates. The year with the highest heating degree-days, 24.98, was the 2002-2003 season, which was also the season with the highest number of manatees observed, 393, and the highest CPUE, 10.62 manatees/day.

Page generated in 0.0955 seconds