• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of direction and eccentricity on pro- and anti-saccade metrics

WATSON, MEGHAN 09 September 2011 (has links)
The ability to process and respond to environmental cues requires the transformation of a sensory stimulus into an appropriate motor response, a process known as a sensorimotor transformation. The anti-saccade task can be used to investigate the ability of a subject to suppress a reflexive saccade towards a visual stimulus (pro-saccade) and generate a voluntary saccade 180° away from it. Additional steps are involved in the anti-saccade sensorimotor transformation that do not occur in the pro-saccade, which may produce performance differences between pro- and anti-saccade metrics. We were interested in exploring these differences to gain insight on the mechanism of the sensorimotor transformation of the anti-saccade and to uncover any directional biases in saccadic performance. Two experiments were performed, one in which stimuli were presented at 20 angular positions with a constant eccentricity of 12°, and another using 18 possible eccentricities along the horizontal. Pro-saccades had faster SRTs and velocities, larger amplitudes, higher accuracy and less variation in their trajectories than anti-saccades. Pro- and anti-saccade performance was shown to exhibit a similar dependence on both saccade goal direction and eccentricity. Differences manifested as a generalized reduction in anti-saccade performance that can be described as a scalar multiple of pro-saccade performance at all locations. Possible causes of this reduced performance were speculated to be i) the involvement of higher cortical structures, ii) errors in the internal representation of the stimulus, iii) sensorimotor coordinate transformation inaccuracy, and iv) online updating of the motor plan and the speed accuracy trade off inherent to saccades. The results of this study are comparable to previous monkey and human studies however certain differences were found that require further investigation. Further investigation is also required to determine the validity of the possible causes of performance reduction in the anti-saccade task and their specific contributions. / Thesis (Master, Neuroscience Studies) -- Queen's University, 2011-09-08 16:31:18.398
2

Development of an Eye Movmement Based Predictive Model for Discrimination of Parkinson's Disease from Other Parkinsonisms and Controls

Kannan, Mary Anisa 01 January 2019 (has links)
Purpose: Due to the neurological aspects of Parkinson’s Disease (PD) and the sensitivity of eye movements to neurological issues, eye tracking has the potential to be an objective biomarker with higher accuracy in diagnosis than current clinical standards. Currently when PD is diagnosed clinically, there is an accuracy of 74% when diagnosed by a general practitioner and 82% when diagnosed by a movement disorder specialist. This study was designed to: 1. Assess eye movements as a potential biomarker for Parkinson’s Disease. 2. Determine if eye movements can distinguish between Parkinson’s Disease and commonly confounded movement disorders with parkinsonian symptoms. 3. Determine if the eye movements of Rapid Eye Movement Behavior Disorder (RBD) patients who will likely convert to PD are distinguishable from healthy controls and if RBD patients have eye movements with similar features to PD. Methods: The eye movements of 160 subjects (43 healthy controls, 63 PD, 31 REM Behavior Disorder, and 22 Other Parkinsonisms) were recorded at 500 Hz and analyzed. Each subject performed five eye tracking tasks that included reflexive saccades, inhibition of reflexive saccades, predictive saccades, and reading. Based on an analysis of selected eye movement measurement parameters, a multivariable logistic regression model was developed that compared: PD vs. Control, PD vs. “Other”, PD vs RBD, and Control vs RBD. The resulting predictive model was then assessed for accuracy, sensitivity, and specificity. Results: After screening, the most statistically significant predictors that were included in the final multivariate model were: Site, Sex, Age, Age squared, UPDRS Score, mean absolute fixation velocity (Horizontal Step Task), saccadic duration, average saccadic velocity, and mean fixation velocity (Predictive Task). The model predicted with an accuracy of: 92% for Controls, 88% for PD, 86% for RBD, and 68% for Other Parkinsonisms. The model was best at distinguishing between PD and Other Parkinsomisms with an accuracy of 89% and RBD and Controls with an accuracy of 88%. Conclusion: This research found that specific combinations of eye tracking parameters from simple tasks can be used to distinguish between PD and commonly confounded movement disorders with parkinsonism symptoms. The model’s ability to distinguish between groups indicates that in a confirmatory study we should have relatively high accuracy in discriminating between groups. This model is able to accurately distinguish Controls from RBDs, however due to an insufficient number of follow-up visits to date, the current study is unable to confirm if the RBDs tested will convert to PD. With such high error rates in diagnosing PD clinically, this model is a potentially beneficial and could serve as an easy screening tool to add to the suite of diagnostic tests and improve clinician’s ability to diagnose accurately.
3

Les anti-saccades prédisent le fonctionnement cognitif dans le vieillissement normal et la maladie de Parkinson

Ouerfelli-Éthier, Julie 07 1900 (has links)
No description available.
4

THE EFFECTS OF NOISE ON AUTONOMIC AROUSAL AND ATTENTION AND THE RELATIONSHIP TO AUTISM SYMPTOMATOLOGY

Ann Marie Alvar (11820860) 18 December 2021 (has links)
<p>Experiment One: The Effect of Noise on Autonomic Arousal</p><p><br></p><p>In response to the growing demand for research that helps us understand the complex interactions between Autonomic Arousal (AA) on behavior and performance there is an increasing need for robust techniques to efficiently utilize stimuli, such as sound, to vary the level of AA within a study. The goal of this study was to look at the impact of several factors, including sound intensity, order of presentation, and direction of presentation on skin conductance level, a widely utilized technique for approximating levels of AA. To do this we had 34 young adults ages 18- 34 listen to a series of 2-minute blocks of a sound stimuli based off a heating, ventilation, and air conditioning system (HVAC). Blocks included 5 single intensity conditions each block differing in 10 dBA steps ranging from 35-75 dBA. We presented blocks in both rising and falling level of intensity, with half the participants hearing them in a rising order first and half in a falling order first. The evidence found by this study suggests that increasing the sound level plays an important role in increasing AA and habituation is an extremely important factor that must be accounted for as it, in the case of typical young adults, quickly dampens the response to stimuli and subsequent stimuli. These findings suggest that researchers can best efficiently maximize the range of AA they can use while keeping their participants comfortable by starting out with the most intense stimuli and proceeding to the less intense stimuli, working with habitation instead of against it.</p><p> </p><p><br></p><p> Experiment Two: The Effect of Autonomic Arousal on Visual Attention</p><p><br></p><p>The goal of this study was to better understand how various levels of autonomic arousal impact different components of attentional control and if ASD-related traits indexed by Autism Quotient scores (AQ) might relate to alterations in this relationship. This study had 41 young adult participants (23 women, 17 men, 1 prefer not to say), ages ranging from 18 to 38 years old. Participants listened to varying levels of noise to induce changes in AA, which were recorded as changes in skin conductance level (SCL). To evaluate attentional control, participants preformed pro and anti-saccade visual gap–overlap paradigm tasks as measures of attentional control. The findings of this study suggest that increased levels of autonomic arousal are helpful for improving performance on anti-saccade tasks, which are heavily dependent on top-down attentional control. Additionally, increases in AQ scores were related to having less of a benefit from increasing levels of arousal on anti-saccade tasks. Additional interactions were also found and are discussed in this paper.</p>
5

Les mécanismes de l’inhibition spatiale et non spatiale

Ouerfelli-Éthier, Julie 04 1900 (has links)
Bien que l’inhibition soit souvent considérée comme un concept uniforme, les habiletés d’inhibition se divisent en plusieurs types : l’inhibition spatiale et l’inhibition de réponse. L’inhibition spatiale réfère à l’atténuation de l’interférence de localisations contenant des stimuli saillants et non pertinents. Par exemple, l’inhibition spatiale guide la recherche visuelle de sorte à limiter la visite répétée de localisations déjà explorées. À l’opposé, l’inhibition de réponse est un processus de type moteur et permet l’adaptation du comportement à un contexte changeant lorsqu’un mouvement doit être altéré ou arrêté. Bien qu’il soit admis que les habiletés d’inhibition se subdivisent en plusieurs types, tel que l’inhibition spatiale et l’inhibition de réponse, les différents mécanismes les sous-tendant demeurent mal compris et sous explorés. L’objectif principal de la présente thèse était d’explorer les mécanismes communs et différents de l’inhibition spatiale et l’inhibition de réponse. Particulièrement, les mécanismes de suppression et de facilitation lors de la sélection de la cible furent décrits pour l’inhibition spatiale. De même, la perturbation des habiletés de l’inhibition spatiale et la préservation relative des habiletés d’inhibition de réponse à la suite à de lésions du cortex pariétal postérieur dorsal furent exemplifiées. Finalement, les apports spécifiques du cortex pariétal postérieur dorsal pour l’inhibition spatiale et l’inhibition de réponse furent définis. / While inhibition is often considered a uniform concept, inhibition abilities can be divided in many types: spatial inhibition and response inhibition. Spatial inhibition refers to the attenuation of the interference from locations containing salient and non-pertinent stimuli. For example, spatial inhibition guides visual search to limit the repeated visit of already explored locations. In contrast, response inhibition is motor-based and allows the adaptability of behaviour in a changing context when a movement must be prevented or altered. Although it is widely accepted that inhibition abilities can be divided in many types, such as spatial or response inhibition, the different mechanisms underlying them remain poorly understood and under-explored. The main aim of the present thesis was to explore the common and different mechanisms of spatial and response inhibition. Precisely, the mechanisms of suppression and enhancement during target selection were described during spatial inhibition. The alteration of spatial inhibition processes and the relative preservation of response inhibition abilities in patients with dorsal posterior parietal cortex lesions were also underlined. Finally, the specific contributions of the dorsal posterior parietal cortex for spatial and response inhibition were defined.

Page generated in 0.0524 seconds