• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Abundance of Antibiotic Resistance Genes in Feces Following Prophylactic and Therapeutic Intramammary Antibiotic Infusion in Dairy Cattle

Willing, Brittany Faith 04 December 2013 (has links)
Prophylactic and therapeutic antibiotic treatments have the potential to increase excretion of antibiotic resistance genes (ARGs) by dairy cattle through selection pressure on the gut microbiome. The objective of these studies was to evaluate the effect of cephapirin benzathine administered prophylactically at the end of lactation and pirlimycin hydrochloride administered therapeutically during a clinical mastitis infection on the abundance and relative abundance of ARGs in dairy cow feces. For prophylactic treatment using cephapirin benzathine, nineteen end-of-lactation cows were used. Treatment cows (n = 9) received cephapirin benzathine as an intramammary infusion prior to dry-off, and control cows (n =10) received no antibiotics. All cows received an internal non-antibiotic teat sealant. Fecal grab samples were collected for each cow on d -2 (baseline, used as covariate), d 1, 3, 5, 7, and once per week until d 49. Fecal samples were collected in sterile containers, then freeze-dried and subject to DNA extraction. The abundance of ampC, blaCMY-2, ermB, sul1, tetO, tetW, integrase-specific gene int1, and 16S rRNA were quantified using quantitative polymerase chain reaction (qPCR). The genes ampC and blaCMY-2 encode resistance to ß-lactam antibiotics, ermB to macrolides, sul1 to sulfonamides, tetO and tetW to tetracyclines, and int1 a class-1 integrase gene that facilitates horizontal transfer of ARGs across bacteria. The 16S rRNA gene was used as a representation of bacterial population. Absolute abundance was defined as number of ARG copies per gram of freeze-dried feces, while relative abundance was defined as ARG copy numbers per copy of 16S rRNA gene, which is indicative of the proportion of bacteria carrying ARGs. Non-normal data were logarithmically transformed and were statistically analyzed using PROC GLIMMIX in SAS 9.2. Abundance and relative abundance of sul1 and blaCMY-2 were below the limit of quantification in most samples and therefore not suitable for statistical comparisons. The int1 gene was not detectable in any sample. There were significant interactions between treatment and day for the abundance and relative abundance of ampC, tetO, and tetW. The abundance and relative abundance of ampC increased with time in control cows while remaining constant in antibiotic treated cows through the dry period. Antibiotics may act to stabilize the gut microbiome in response to diet and housing changes. There was a significant main effect of treatment for ermB with a significantly greater proportion of bacteria carrying ermB in control cows when compared to antibiotic treated cows. The tetracycline resistance genes tetO and tetW behaved similarly with a significant treatment by day interaction for the abundance and relative abundance of both genes. The relative abundance of both tetO and tetW were greater in control cows when compared to antibiotic treated cows on days 3, 5, 7, and 14. The abundance of both tetO and tetW resistance genes increased in antibiotic treated cows from day 1 to 49. There was also a significant increase in tetW relative abundance when comparing day 1 to 49. Administering long-acting antibiotics as intramammary dry treatment changed fecal bacteria composition during the dry period perhaps by stabilizing GI bacteria through dietary and housing changes. However, the use of prophylactic dry cow treatment does not uniformly or predictably lead to changes in fecal ARGs. In a second study, after clinical mastitis detection and identification, 6 lactating dairy cows received therapeutic mastitis treatment (pirlimycin hydrochloride as an intramammary infusion). Fecal grab samples were collected from each cow on d 0, 3, 9, and 12. Collection and analytical methods were as previously described. Abundance and relative abundance of sul1 and blaCMY-2 were again below the limit of quantification and therefore not suitable for statistical comparison. The int1 gene was not detected in any sample. The abundance of 16S rRNA genes decreased with day and relative abundance ermB, tetO, and tetW increased with day. There was no significant effect of day on the relative abundance of ampC or the abundance of ampC, ermB, tetO, and tetW in feces of cows with clinical mastitis. Administering fast-acting antibiotics as therapeutic intramammary mastitis treatment to dairy cows increased the relative abundance (gene copies per 16S rRNA) of selected ARGs but not the total abundance of ARGs in feces. The use of antibiotics for prevention and treatment of bacterial infections does not uniformly or predictably increase ARGs. / Master of Science
2

Purification, characterisation and mutagenesis of aminoglycoside (3')(9) nucleotidyltransferase

Hadipour, Sara January 1996 (has links)
No description available.
3

Excretion of Antibiotic Resistance Genes by Dairy Calves

Thames, Callie H. 21 March 2013 (has links)
Twenty-eight Holstein and crossbred calves of both genders were used to evaluate the effect of milk replacer antibiotics on abundance of selected antibiotic resistance genes (ARG) in the feces. Calves were blocked by breed, gender, and birth order, and assigned to one of three treatments at birth. Treatments were control (containing no antibiotics in the milk replacer), subtherapeutic (neomycin sulfate and oxytetracycline hydrochloride each fed at 10 mg/calf/d), and therapeutic (no antibiotics in the milk replacer until d 36, then neomycin sulfate and oxytetracycline hydrochloride each fed at 1000 mg/calf/d for 14 d). Calves were fed milk replacer twice daily at 0600 h and 1800 h. Fecal and respiratory scores and rectal temperatures were recorded daily. Calves were weighed at birth and weaning to calculate average daily gain. Beginning at six weeks of age fecal grab samples were collected from heifers at 0600 h, 1400 h, 2000 h, and 2400 h for 7 d, while bull calves were placed in metabolism crates for collection of all feces and urine. DNA was extracted from feces, and ARG corresponding to the tetracyclines (tetC, tetG, tetO, tetW, and tetX), macrolides (ermB, ermF), and sulfonamides (sul1, sul2) classes of antibiotics along with the class I integron gene, intI1, were measured by quantitative polymerase chain reaction (qPCR). No tetC or intI was detected. There was no significant effect of antibiotic treatment on the absolute abundance (gene copies/ g wet manure) of any of the ARG except ermF, which was lower in the antibiotic-treated calf manure probably because host bacterial cells carrying ermF were not resistant to tetracycline or neomycin. All ARG except tetC and intI were detectable in feces from 6 weeks onwards, and tetW and tetG significantly increased with time (P < 0.10), even in control calves. Overall, the majority of ARG analyzed for were present in the feces of the calves regardless of exposure to dietary antibiotic. Feed antibiotics had little effect on the ARG monitored; other methods for reducing the ARG pool should also be investigated. / Master of Science
4

The effect of combined sewer overflows on the abundance of antibiotic resistance genes and bacteria in the James River

Levengood, Enjolie 01 January 2017 (has links)
Antibiotic resistance is a major threat to human health. Clinical situations are the main focus for antibiotic resistance research, but understanding the spread of resistance in the environment is also vital. A major contributor to this spread is wastewater from combined sewer overflow (CSO) events. The effect of CSO events on antibiotic resistance in the James River near Richmond, Virginia was studied using genomic and microbiological approaches. The abundance of genes associated with resistance to quinolones (qnrA) and tetracycline (tetW) was strongly correlated with the presence of fecal indicator bacteria (E. coli abundance) as well as total nitrogen and phosphorus loads, which suggests an anthropogenic source of these genes. Abundance of the blaTEM gene, which confers resistance to β-lactam antibiotics, was elevated during CSO events and increased with precipitation and river discharge. Bacteria isolated during a CSO event were resistant to more antibiotics and had higher multi-drug resistance when compared to isolates from a non-event. This study demonstrated that CSO events are contributing to the spread of antibiotic resistance.
5

Occurrence and characterization of antibiotic-resistant Escherichia coli in wastewater and surface water / 下水と表流水の薬剤耐性大腸菌の存在実態と特徴

Ma, Chih-Yu 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22762号 / 工博第4761号 / 新制||工||1745(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 田中 宏明, 教授 米田 稔, 准教授 松田 知成 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.1023 seconds