Spelling suggestions: "subject:"antipodes"" "subject:"antipodal""
1 |
A Combinatorial Miscellany: Antipodes, Parking Cars, and Descent Set PowersHapp, Alexander Thomas 01 January 2018 (has links)
In this dissertation we first introduce an extension of the notion of parking functions to cars of different sizes. We prove a product formula for the number of such sequences and provide a refinement using a multi-parameter extension of the Abel--Rothe polynomial. Next, we study the incidence Hopf algebra on the noncrossing partition lattice. We demonstrate a bijection between the terms in the canceled chain decomposition of its antipode and noncrossing hypertrees. Thirdly, we analyze the sum of the 𝑟th powers of the descent set statistic on permutations and how many small prime factors occur in these numbers. These results depend upon the base 𝑝 expansion of both the dimension and the power of these statistics. Finally, we inspect the ƒ-vector of the descent polytope DPv, proving a maximization result using an analogue of the boustrophedon transform.
|
2 |
Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemplesLESIEUR, Franck 14 November 2003 (has links) (PDF)
Cette thèse propose une définition des groupoïdes quantiques mesurés. L'objectif est la construction d'objets, munis d'une dualité, qui englobent à la fois les groupoïdes et les groupes quantiques. On s'appuie sur les travaux de J. Kustermans et S. Vaes concernant les groupes quantiques localement compacts qu'on généralise grâce au formalisme introduit par M. Enock et J.M. Vallin à propos des inclusions d'algèbres de von Neumann. A partir d'un bimodule de Hopf muni de poids opératoriels invariants à gauche et à droite, on définit un unitaire pseudo-multiplicatif fondamental. On introduit la notion de poids quasi-invariant sur la base et on construit une antipode avec décomposition polaire, une coinvolution, un groupe d'échelle, un module et un opérateur d'échelle. La construction du dual nécessite une hypothèse supplémentaire de densité vérifiée dans de nombreux cas. On obtient un théorème de bidualité dans le cas où la base est semifinie. Cette théorie est illustrée par différents exemples.
|
Page generated in 0.0571 seconds