• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetic Properties and Domains in the Uniaxial Ferromagnet Mn1.4PtSn and the Non-collinear Antiferromagnet Mn3Pt under Strain

Zuniga Cespedes, Belen Elizabeth 01 April 2022 (has links)
Magnetic materials are of great research interest because of their potential applications. Most Mn-based compounds exhibit magnetic ordering, being antiferromagnetic or ferromagnetic depending on their crystal structure. Many of these compounds have complex non-collinear magnetic structures that can give rise to exotic and robust phenomena. The scope of this thesis encompasses two independent projects on exploring single-crystalline Mn-based compounds with magnetic properties: (i) the study of the thickness-dependent magnetic textures in ferromagnetic Mn1.4PtSn by means of Focused Ion Beam (FIB) for sample shaping and Magnetic Force Microscopy (MFM) for imaging, and (ii) the experimental demonstration of an anomalous Hall effect in non-collinear antiferromagnetic Mn3Pt, revealed with the aid of uniaxial pressure tuned in-situ. The first chapter motivates the study of magnetic materials and introduces the theoretical framework on which they are understood. In particular, refers to the energy contributions of magnetic origin and gives an overview of the Hall effect and how it is used to probe magnetic properties, from ferromagnetism to non-collinear antiferromagnetism and non-coplanar spin textures (such as the so-called skyrmions). The second chapter is dedicated to the ferromagnetic compound Mn1.4PtSn. It starts by introducing concepts important in the context of magnetic domains. A variety of magnetic textures are discussed, in particular antiskyrmions which differ from regular skyrmions by their internal structure. A material-specific introduction is given, starting by its discovery as the first antiskyrmion-hosting compound (when in thin-plate shape) and including recent literature showing by means of neutron scattering how magnetic domains in bulk single crystals are best described as anisotropic fractals. This study complements our first observations in real-space MFM images of the magnetic texture in this material. The detailed study of the dependence of the magnetic domains as a function of sample thickness is presented and analyzed. The third and final chapter focuses on antiferromagnetic Mn3Pt. To motivate the experiment, the theoretical study that predicts the presence of an intrinsic zero-field anomalous contribution to the Hall effect for this material is introduced. Next, the experimental investigation of single crystals of Mn3Pt is presented, where a Hall effect dominated by the ordinary contribution in the temperature range from 10 to 300 K is found. Thereafter, the response of the Hall effect to uniaxial pressure tuned in-situ is explored. When the sample is compressed, a hysteresis is observed to open up. The magnitude of this anomalous Hall conductivity (when compressing the sample by ∼0.2 GPa) is estimated to be at least ∼ 10 Ω-1cm-1 at room temperature and ∼ 40 Ω-1cm-1 at 100 K, and it is demonstrated that the measured value originates in the antiferromagnetic structure, rather than in a stress-induced ferromagnetism.:1 Introduction 1 1.1 Overview of elemental properties . . . . . . . . . . . . . . . . 1 1.1.1 Notes on Mn . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Notes on Pt . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Notes on Sn . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Magnetic Interactions . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Zeeman interaction . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Magnetostatic energy . . . . . . . . . . . . . . . . . . . 5 1.2.3 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . 6 1.2.4 Magnetoelastic coupling . . . . . . . . . . . . . . . . . 7 1.2.5 Exchange interaction . . . . . . . . . . . . . . . . . . . 8 1.2.6 Antisymmetric exchange . . . . . . . . . . . . . . . . . 10 1.3 Antiferro-, ferri- and helimagnets . . . . . . . . . . . . . . . . 11 1.4 Hall effect in magnetism . . . . . . . . . . . . . . . . . . . . . 14 1.4.1 Geometrical phase in quantum mechanics . . . . . . . 14 In the context of the anomalous Hall effect . . . . . . 16 1.4.2 Complementary anomalous Hall theories . . . . . . . . 18 Skew scattering . . . . . . . . . . . . . . . . . . . . . . 18 Inelastic scattering . . . . . . . . . . . . . . . . . . . . 18 Side jump . . . . . . . . . . . . . . . . . . . . . . . . . 18 Spin chirality mechanism . . . . . . . . . . . . . . . . 19 I The uniaxial ferromagnet Mn1.4PtSn 21 2 Mn1.4PtSn 23 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Background physics . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1 Topology in magnetism . . . . . . . . . . . . . . . . . 27 2.2.2 Domain theory . . . . . . . . . . . . . . . . . . . . . . 29 Domain refinement . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Literature overview . . . . . . . . . . . . . . . . . . . . 32 SANS studies on bulk Mn1.4PtSn . . . . . . . . . . . . 34 2.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 Sample preparation . . . . . . . . . . . . . . . . . . . . 37 2.3.2 Lamellae fabrication . . . . . . . . . . . . . . . . . . . 37 2.3.3 Magnetic Force Microscopy . . . . . . . . . . . . . . . 38 History . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Operating principle . . . . . . . . . . . . . . . . . . . . 39 Specifications for our experiments . . . . . . . . . . . . 40 2.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . 40 2.4.1 Bulk samples characterization . . . . . . . . . . . . . . 40 Mn1.4Pt0.9Pd0.1Sn polycrystal . . . . . . . . . . . . . . 40 Mn1.4PtSn single crystal . . . . . . . . . . . . . . . . . 43 Mn1.4PtSn single crystal in applied field . . . . . . . . 45 Mn1.4PtSn single crystal below TSR . . . . . . . . . . . 46 2.4.2 Lamellae characterization . . . . . . . . . . . . . . . . 48 Thickness dependence . . . . . . . . . . . . . . . . . . 48 Temperature dependence . . . . . . . . . . . . . . . . 54 Magnetic field dependence . . . . . . . . . . . . . . . . 56 2.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . 63 II The non-collinear antiferromagnet Mn3Pt under strain 65 3 Mn3Pt 67 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2 Background physics . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.1 Thin film study of Mn3Pt . . . . . . . . . . . . . . . . 71 3.2.2 Our contribution . . . . . . . . . . . . . . . . . . . . . 73 3.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . 74 3.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . 75 3.4.1 Characterization of unstrained crystals . . . . . . . . . 75 3.4.2 Elastic response of Mn3Pt single crystals . . . . . . . . 79 Electrical transport response to strain . . . . . . . . . 81 3.4.3 Onset of AHE in single crystals under uniaxial pressure 84 Sample III4 . . . . . . . . . . . . . . . . . . . . . . . . 84 Sample IV1 . . . . . . . . . . . . . . . . . . . . . . . . 89 Sample IV2 . . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.4 Temperature dependence of the AHE . . . . . . . . . . 94 3.4.5 Elastic limit of Mn3Pt . . . . . . . . . . . . . . . . . . 98 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 A On Mn3Pt resistivity 101 B On Mn3Pt sample mounting 103
2

Study of Magnetic and Magnetotransport Properties of Epitaxial MnPtGa and Mn2Rh(1-x)Ir(x)Sn Heusler Thin Films

Ibarra, Rebeca 08 November 2023 (has links)
Manganese-based Heusler compounds display intriguing fundamental physical properties, determined by the delicate balance of magnetic interactions that give rise to real and reciprocal-space topology, sparking the interest in their potential application in the spin-based technology of the future. In this thesis, a thorough study of thin films of two Mn-based Heusler compounds, the hexagonal MnPtGa and inverse tetragonal Mn2Rh(1-x)Ir(x)Sn (0 < x < 0.4) system, was performed. The observation of Néel-type skyrmions in single-crystalline MnPtGa motivated our interest in the growth and characterization of thin films of this compound. The films were deposited by magnetron sputtering on (0001)-Al2O3 single crystalline substrates, achieving the epitaxial growth of the Ni2In-type hexagonal crystal structure (P6_3/mmc space group, no. 194). Two thermally-induced magnetic transitions were identified in MnPtGa thin films: below the ordering temperature (T_C=273 K) the system becomes ferromagnetic, followed by a spin-reorientation transition at T_sr=160 K, adopting a spin-canted magnetic structure. Resorting to single-crystal neutron diffraction (SCND), we were able to resolve the magnetic ground state of our MnPtGa thin films. The Mn magnetic moments were found to tilt 20 degrees away from the c-axis, forming a commensurate magnetic structure with a ferromagnetic component along the crystallographic c-axis and a staggered antiferromagnetic one in the basal plane. This further demonstrated the applicability of a bulk technique, such as SCND, to the study of magnetic structures in thin films. Additionally, the perpendicular magnetic anisotropy (PMA) in the system was determined by magnetometry technique. Electrical magnetotransport measurements were performed in a thickness series of MnPtGa thin films. A non-monotonous anomalous Hall conductivity (AHC) was observed, whose intrinsic Berry-curvature origin was elucidated by means of first-principle calculations. We further observed by magnetic force microscopy technique the nucleation of irregular magnetic bubbles under the application of a magnetic field. We tentatively link their appearance to the onset of an additional electron scattering mechanism contributing to the transverse resistivity. In the second part of this thesis, the inverse tetragonal Mn2Rh(1-x)Ir(x)Sn (0 < x < 0.4) system was investigated. The films were grown on MgO(100) single crystalline substrates, promoting the epitaxial growth of the tetragonal structure (I-4m2 space group, no. 119). We primarily focused on the impact of the systematic substitution of iridium on the structural, magnetic and electrical (magneto)transport properties of the system. A compression of the basal lattice parameters and elongation of the c-axis, accompanied by larger crystallographic disorder, was observed as the Ir content (x) increased, altering the Mn-Mn exchange interactions and therefore the magnetic properties of the compound. Mn2RhSn have two thermally-induced magnetic transitions: first, to a collinear ferrimagnetic state below the Curie temperature (T_C=280 K), followed by a spin-reorientation transition at T_sr=80 K to a noncollinear state, determined by two inequivalent Mn sublattices. A reduction of both T_C and T_sr was observed, as well as a tendency towards a hard-axis ferromagnet and therefore larger PMA as the Ir content of the films was increased. Additionally, a reduction of the saturation magnetization suggest a change of the magnitude of the spin canting upon Ir-substitution. The electrical magnetotransport properties of the Mn2Rh(1-x)Ir(x)Sn (0 < x < 0.4) thin films were acquired and analyzed in a wide temperature and magnetic field range. A strongly temperature and composition dependent non-monotonous AHC was found, suggesting two regimes in the electronic transport: (i) a nearly x-independent regime dominated by intrinsic Berry-curvature and (ii) a strongly x-dependent regime suggesting a more relevant role from extrinsic mechanisms contributing to the AHC. On the other hand, the Mn2Rh(0.95)Ir(0.05)Sn bulk system is known to host magnetic skyrmion and antiskyrmion phases. We indirectly assessed the impact of the systematic Ir-substitution on the (anti)skyrmionic phases through the analysis of the sign of the topological Hall effect in our thin films. A tendency towards the suppression of the low-T skyrmion phase stabilized by magnetic dipole-dipole interaction, and subsistence of the high-T antiskyrmion phase in Mn2Rh(1-x)Ir(x)Sn thin films was found as x > 0.2, which can be interpreted as a change of magnitude of the anisotropic DMI in this tetragonal D_2d system upon Ir-substitution. We have thus demonstrated that the magnetic and topological properties of the Mn2Rh(1-x)Ir(x)Sn system can be tailored upon chemical substitution, showing a strongly intertwined relation between composition, crystal and electronic structure, with the emergence of exotic magnetic phases, ultimately reflected in their electrical transport signatures.:Abstract iii Abbreviations iv Symbols vi Preface xii 1 Fundamentals 1 1.1 Noncollinear magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Magnetic interactions in solids . . . . . . . . . . . . . . . . . . . 2 1.1.1.1 Exchange interaction . . . . . . . . . . . . . . . . . . . 2 1.1.1.2 Dzyaloshinsky-Moriya interaction . . . . . . . . . . . . 3 1.1.1.3 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . 4 1.1.1.4 Magnetic dipolar interaction . . . . . . . . . . . . . . . 5 1.1.2 Spin-reorientation transition . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Magnetic skyrmions and antiskyrmions . . . . . . . . . . . . . . 6 1.1.3.1 Antiskyrmions in Heusler compounds . . . . . . . . . . 8 1.2 Magnetic Heusler compounds . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Cubic crystal structure . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.2 Distorted crystal structures . . . . . . . . . . . . . . . . . . . . 10 1.2.2.1 Tetragonal Heusler compounds . . . . . . . . . . . . . 11 1.2.2.2 Hexagonal Heusler compounds . . . . . . . . . . . . . 11 1.3 Charge and spin transport in ferromagnets . . . . . . . . . . . . . . . . 13 1.3.1 The two-current model . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 The Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2.1 Anomalous Hall effect . . . . . . . . . . . . . . . . . . 15 1.3.2.2 Topological Hall effect . . . . . . . . . . . . . . . . . . 17 1.4 Neutron scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.1 Thermal Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.1.1 Scattering cross sections . . . . . . . . . . . . . . . . . 19 1.4.1.2 The four-circle diffractometer . . . . . . . . . . . . . . 23 xv 1.4.2 Magnetic neutron scattering . . . . . . . . . . . . . . . . . . . . 24 2 Experimental Techniques 29 2.1 Magnetron sputtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.1 Thin films growth modes . . . . . . . . . . . . . . . . . . . . . . 32 2.1.2 Thin films microstructure . . . . . . . . . . . . . . . . . . . . . 33 2.2 X-ray characterization of thin films . . . . . . . . . . . . . . . . . . . . 34 2.2.1 Geometry of the X-ray diffractometer . . . . . . . . . . . . . . . 35 2.2.2 Radial θ-2θ scan . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.3 ϕ -scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.4 Rocking curves (ω-scans) . . . . . . . . . . . . . . . . . . . . . . 36 2.2.5 X-ray reflectivity (XRR) . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Composition analysis: energy dispersive X-ray spectroscopy (EDS) . . . 38 2.4 Surface characterization: atomic and magnetic force microscopy . . . . 38 2.5 D10 thermal neutron diffractometer . . . . . . . . . . . . . . . . . . . . 39 2.6 SQUID-VSM magnetometry . . . . . . . . . . . . . . . . . . . . . . . . 40 2.7 Electrical (magneto-)transport measurements . . . . . . . . . . . . . . 41 3 Noncollinear magnetism in MnPtGa epitaxial thin films 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 MnPtGa thin films: growth and characterization . . . . . . . . . . . . . 45 3.2.1 Growth conditions . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2 Crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3 Magnetic properties of MnPtGa thin films . . . . . . . . . . . . . . . . 49 3.3.1 Thermal evolution of the magnetic structure . . . . . . . . . . . 49 3.3.2 Field dependent magnetization . . . . . . . . . . . . . . . . . . 50 3.3.3 Single-crystal neutron diffraction in MnPtGa thin films . . . . . 52 3.3.3.1 Ferromagnetic phase . . . . . . . . . . . . . . . . . . . 54 3.3.3.2 Noncollinear phase . . . . . . . . . . . . . . . . . . . . 55 3.4 Electronic band structure of h-MnPtGa . . . . . . . . . . . . . . . . . . 57 3.5 Electrical magnetotransport properties of MnPtGa thin films . . . . . . 59 3.5.1 Zero field longitudinal resistivity . . . . . . . . . . . . . . . . . . 60 3.5.2 Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5.3 Magnetic transitions under a magnetic field . . . . . . . . . . . 64 3.6 Intrinsic origin of the anomalous Hall effect . . . . . . . . . . . . . . . . 65 3.6.1 Scaling of the anomalous Hall conductivity vs. σxx . . . . . . . 68 3.7 Spin textures in MnPtGa thin films . . . . . . . . . . . . . . . . . . . . 73 3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4 Tuning the magnetic and topological properties of Mn2Rh1−xIrxSn epitaxial thin films 83 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Growth and characterization of Mn2Rh1−xIrxSn thin films . . . . . . . 86 4.2.1 Growth conditions and Ir substitution . . . . . . . . . . . . . . 86 4.2.2 Crystal structure of Mn2Rh1−xIrxSn . . . . . . . . . . . . . . . . 87 4.3 Tuning the magnetic properties of the Mn2Rh1−xIrxSn system . . . . . 91 xvi 4.3.1 Thermal magnetic transitions . . . . . . . . . . . . . . . . . . . 91 4.3.2 Increasing the magnetic anisotropy under Ir-substitution . . . . 92 4.4 Electrical (magneto-)transport properties of Mn2Rh1−xIrxSn thin films 94 4.4.1 Zero-field longitudinal resistivity and spin reorientation transition 94 4.4.2 Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.3 Hall effects: from ordinary to anomalous & topological . . . . . 96 4.4.3.1 Ordinary Hall effect . . . . . . . . . . . . . . . . . . . 97 4.4.3.2 Anomalous Hall effect . . . . . . . . . . . . . . . . . . 98 4.4.3.3 Competing mechanisms in the AHC of the Mn2Rh1−xIrxSn system . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4.3.4 Scaling of the AHC with the magnetization . . . . . . 101 4.4.3.5 Topological Hall effect . . . . . . . . . . . . . . . . . . 102 4.5 Tuning the (Anti-)Skyrmion phases . . . . . . . . . . . . . . . . . . . . 106 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5 Conclusions & Outlook 111 List of Figures 117 List of Tables 120 List of Publications 124 Aknowledgements 124 Bibliography 127 Eigenständigkeitserklärung 147

Page generated in 0.0451 seconds