• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 4
  • Tagged with
  • 17
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mass Spectrometric Approaches to Probing the Redox Function of Ape1

Delaplane, Sarah Ann 03 July 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Human apurinic/apyrimidinic endonuclease 1 (hApe1) is a multi-functional protein having two major functions: apurinic/apyrimidinic endonuclease activity for DNA damage repair and redox activity for gene regulation. Many studies have shown the action of Ape1 in the base excision repair pathway leading to cell survival. It has also been reported that Ape1 reduces a number of important transcription factors that are involved in cancer promotion and progression. Though the repair activity is well understood, the redox mechanism is not yet clear. What is known about Ape1 is its structure and that it contains seven cysteines (C65, C93, C99, C138, C208, C296, and C310), none of which are disulfide bonded. Two of these cysteines, C99 and C138, are solvent-accessible, and C65, C93, and C99 are located in the redox domain. It is believed that one or more cysteines are involved in the redox function and is hypothesized that hApe1 reduces the down-stream transcription factors by a disulfide exchange mechanism. E3330, (2E)-3-[5-(2,3-dimethoxy-6-methyl-1,4-benzoquninoyl)]2-nonyl-2-propenoic acid, is a specific inhibitor for the redox function of hApe1. The interaction mechanism is not known. Using N-Ethylmaleimide (NEM) chemical footprinting, combined with Hydrogen/Deuterium Exchange (HDX) data, we propose that a locally unfolded form coexists with the folded form in an equilibrium that is driven by irreversible NEM labeling, and that E3330 interacts with and stabilizes this locally unfolded form. This locally unfolded form is thereby proposed to be the redox-active form. We further support this claim with LC-MS/MS analysis showing an increase of disulfide bonds induced by E3330 among the cysteines in the redox domain, which would be too far apart from each other in the folded form to form a disulfide bond. We also studied three analogs of E3330. The need for an E3330 analog is to develop a more efficient and effective compound that would allow for sub-micromolar levels of activity (E3330 requires a micromolar amount). Study of the analogs will also allow us to gain perspective of the mechanism or mechanisms of E3330’s activity in Ape1’s redox function.
12

The regulatory roles of APE1 and Prdx1 interaction

Wang, Zhiqiang 07 1900 (has links)
L’apurinic/apyrimidic endonuclease 1 (APE1) est une protéine multifonctionnelle qui joue un rôle important dans la voie de réparation de l’ADN par excision de base. Elle sert également de coactivateur de transcription et est aussi impliquée dans le métabolisme de l’ARN et la régulation redox. APE1 peut cliver les sites AP ainsi que retirer des groupements, sur des extrémités 3’ créées suite à des bris simple brin, qui bloquent les autres enzymes de réparation, permettant de poursuivre la réparation de l’ADN, puisqu’elle possède plusieurs activités de réparation de l’ADN comme une activité phosphodiestérase 3’ et une activité exonucléase 3’→5’. Les cellules de mammifères ayant subi un knockdown d’APE1 présentent une grande sensibilité face à de nombreux agents génotoxiques. APE1 ne possède qu’une seule cystéine située au 65e acide aminé. Celle-ci est nécessaire pour maintenir l’état de réduction de nombreux activateurs de transcription tels que p53, NF-κB, AP-1, c-Jun at c-Fos. Ainsi, elle se retrouve impliquée dans la régulation de l’expression génique. APE1 passe également à travers au moins 4 types de modifications post-traductionnelles : l’acétylation, la désacétylation, la phosphorylation et l’ubiquitylation. La façon dont APE1 est recrutée pour accomplir ses différentes fonctions biologiques demeure un mystère, bien que cela puisse être relié à sa capacité d’interaction avec de multiples partenaires différents. Sous des conditions de croissance normales, il a été démontré qu’APE1 interagit avec de nombreux partenaires impliqués dans de multiples fonctions. Nous émettons l’hypothèse que l’état d’oxydation d’APE1 est ce qui contrôle les partenaires avec lesquels la protéine interagira, lui permettant d’accomplir des fonctions précises. Dans cette étude nous démontrons que le peroxyde d’hydrogène altère le réseau d’interactions d’APE1. Un nouveau partenaire d’interaction d’APE1, Prdx1, un membre de la famille des peroxirédoxines responsable de récupérer le peroxyde d’hydrogène, est caractérisé. Nous démontrons qu’un knockdown de Prdx1 n’affecte pas l’activité de réparation de l’ADN d’APE1, mais altère sa détection et sa distribution cellulaire à l’intérieur des cellules HepG2 conduisant à une induction accrue de l’interleukine 8 (IL-8). L’IL8 est une chimiokine impliquée dans le stress cellulaire en conditions physiologiques et en cas de stress oxydatif. Il a été démontré que l’induction de l’IL-8 est dépendante d’APE1 indiquant que Prdx1 pourrait réguler l’activité transcriptionnelle d’APE1. Il a été découvert que Prdx1 est impliquée dans la régulation redox suite à une réponse initiée par le peroxyde d’hydrogène. Ce dernier possède un rôle important comme molécule de signalisation dans de nombreux processus biologiques. Nous montrons que Prdx1 est nécessaire pour réduire APE1 dans le cytoplasme en réponse à la présence de H2O2. En présence de Prdx1, la fraction d’APE1 présent dans le cytoplasme est réduite suite à une exposition au peroxyde d’hydrogène, et Prdx1 est hyperoxydé suite à l’interaction entre les deux molécules. Cela suggère que le signal, que produit le peroxyde d’hydrogène, sur APE1 passe par Prdx1. Un knockdown d’APE1 diminue la conversion de la forme dimérique de Prdx1 vers la forme monomérique. Cette observation implique qu’APE1 pourrait être impliquée dans la régulation de l’activité catalytique de Prdx1 en accélérant son hyperoxydation. / Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein, which play important roles in base excision repair (BER) pathway and serve as transcriptional co-activator. APE1 is also involved in RNA metabolism and redox regulation. APE1 can cleave abasic sites and process 3’-blocking termini into 3’-OH for DNA repair replication as it posseses several DNA repair activities including AP endonuclease, 3’-phosphodiesterase and 3’ to 5’-exonuclease. Mammalian cells knockdown for APE1 are very sensitive to various DNA damaging agents. APE1 has a unique cysteine C65, which is required to maintain the reduced state of several transcriptional activators such as p53, NF-кB, AP-1, c-Jun, and c-Fos and therefore is involved in the regulation of gene expression. APE1 also undergoes at least four types of post-translational modifications that include acetylation, deacetylation, phosphorylation and ubiquitylation. How APE1 is being recruited to execute the various biological functions remains a challenge, although this could be directly related to its ability to interact with multiple different partners. Under normal growth conditions, APE1 has been shown to interact with a number of proteins that are involved in various functions. We propose that the oxidative state of APE1 governs its interacting partners thereby allowing the protein to perform specific functions. In this study we find that APE1 interactome alters in response to hydrogen peroxide. One novel APE1 interacting partner Prdx1, a member of the peroxiredoxin family that can scavenge hydrogen peroxide is characterized. We demonstrate that knockdown of Prdx1 did not impair APE1 DNA repair activity, but alters APE1 detection, and subcellular distribution in HepG2 cells leading to the induction of interleukin 8 (IL-8). IL-8 is a pro-inflammatory chemokine involved in cellular stress, under physiological and iv oxidative stress conditions. It has been shown that the induction of IL-8 is dependent on APE1 indicating Prdx1 may regulate APE1 transcriptional activity. Prdx1 has been discovered to be involved in the redox regulation of cell signaling initiated by hydrogen peroxide, which has important roles as a signaling molecule in the regulation of a variety of biological processes. Prdx1 exists as a dimer in the cells and we show that Prdx1 is required to reduce APE1 in the cytoplasm in response to H2O2. During this process, the dimeric form of Prdx1 is converted to the oxidized monomeric form. Interestingly, the H2O2-induced conversion of Prdx1 to the monomeric form is dependent upon the presence of APE1. These observations imply that there is a tight regulatory network existing between APE1 and Prdx1.
13

Inhibition of Ape1's DNA repair activity as a target in cancer identification of novel small molecules that have translational potential for molecularly targeted cancer therapy /

Bapat, Aditi Ajit. January 2009 (has links)
Thesis (Ph.D.)--Indiana University, 2009. / Title from screen (viewed on February 2, 2010). Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis (IUPUI). Advisor(s): Mark R. Kelley, Millie M. Georgiadis, John J. Turchi, Martin L. Smith. Includes vitae. Includes bibliographical references (leaves 114-133).
14

Fast photochemical oxidation of proteins coupled to mass spectrometry reveals conformational states of apurinic/apyrimidic endonuclease 1

Hernandez Quiñones, Denisse Berenice 08 July 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fast photochemical oxidation of proteins (FPOP) is an emerging footprinting method that utilizes hydroxyl radicals. The use of hydroxyl radicals create stable labeled products that can be analyzed with mass spectrometry. The advantage of FPOP over other methods is the fast acquisition of results and the small amount of sample required for analysis. Protein structure and protein- ligand interactions have been studied with FPOP. Here we evaluated (1) the reproducibility of FPOP, (2) the effect of hydrogen peroxide concentration on oxidation and (3) the use of FPOP to evaluate protein- nucleic acid interaction with Apurinic/Apurinic endonuclease 1 (APE1) protein. APE1 is a pleotropic protein that has been crystallized and studied widely. The 35641.5 Da protein has two major functional activities: DNA repair and redox function. An intact protein study of APE1 showed consistent global labeling by FPOP and a correlation between oxidation and hydrogen peroxide concentration. Furthermore, analysis of APE1 with DNA was done in hopes of probing the DNA binding site. Although the oxidation observed was not sufficient to define the complex pocket, a dramatic effect was seen in residue oxidation when DNA was added. Interestingly, the internal residues were labeled collectively in all APE1 experiments which indicates partial unfolding of the protein as previously suggested in the literature. Hence, these findings establish the use of FPOP to capture protein dynamics and provide evidence of the existence breathing dynamics of APE1.
15

MULTIVARIATE ANALYSIS TO IDENTIFY POTENTIAL BIOMARKERS FOR PROGNOSIS AND TREATMENT RESISTANCE IN HEAD AND NECK CANCER PATIENTS

Wicker, Christina Ann 01 January 2018 (has links)
It is estimated that nearly 50,000 individuals in the United States will be diagnosed with head and neck cancer in 2017 (American Cancer Society www.cancer.org). Ninety percent of oral cancers are head and neck squamous cell carcinoma (HNSCC). Major obstacles in the treatment of HNSCC are recurrence and treatment resistance, which contributes to increased mortality. Therefore, there is increased need to determine genetic alterations in HNSCC that may be ideal novel drug targets, and biomarkers to improve diagnostic and prognostic testing. Abnormal localization and overexpression of base excision repair protein and transcriptional regulator Apurinic/Apyrimidic endonuclease (APE1) has been associated with treatment resistance and poor prognosis. Therefore, we explored mechanisms for how APE1 contributes to treatment resistance and increased mortality in HNSCC. Because oxidative stress heavily influences APE1’s expression and transcriptional regulatory activities, we examined genes involved in oxidative stress management, including SOD3 and NRF2. PPARGC1A, a NRF2 transcriptional co-activator, was also examined as our lab previously observed a link between APE1 and PPARGC1A expression. This previous work also revealed that APE1 suppressed gene expression of tumor suppressor, decorin (DCN). To examine possible mechanisms for how APE1 regulates expression of tumor suppressors and antioxidants, digital image analysis of immunohistochemistry staining was used to identify alterations in protein expression. Nuclear and total cellular protein expression of APE1, DCN, NRF2, PPARGC1A, and SOD3 were quantified in regions of proximal benign, carcinoma in situ (CIS) and invasive HNSCC. Patient survival analysis revealed that increased APE1, DCN, and PPARGC1A protein levels were significantly associated with reduced survival in CIS, benign, and invasive tissues respectively. Using multivariate analysis of protein expression, we identified that increased APE1 protein levels in the CIS of primary tumors were associated with the presence of cancer invaded lymph nodes. Elevated DCN and SOD3 protein levels in benign tissue were associated with poorly differentiated tumors as was reduced PPARGC1A in CIS. Most importantly, potential prognostic biomarkers for use in early cancer development were identified. Identifying poor prognosis in early cancer development allows the possibility of improved treatment strategies, which could prevent invasive cancer development, and increase patient survival.
16

Inhibition of Ape1's DNA Repair Activity as a Target in Cancer: Identification of Novel Small Molecules that have Translational Potential for Molecularly Targeted Cancer Therapy

Bapat, Aditi Ajit 02 February 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The DNA Base Excision Repair (BER) pathway repairs DNA damaged by endogenous and exogenous agents including chemotherapeutic agents. Removal of the damaged base by a DNA glycosylase creates an apurinic / apyrimidinic (AP) site. AP endonuclease1 (Ape1), a critical component in this pathway, hydrolyzes the phosphodiester backbone 5’ to the AP site to facilitate repair. Additionally, Ape1 also functions as a redox factor, known as Ref-1, to reduce and activate key transcription factors such as AP-1 (Fos/Jun), p53, HIF-1α and others. Elevated Ape1 levels in cancers are indicators of poor prognosis and chemotherapeutic resistance, and removal of Ape1 via methodology such as siRNA sensitizes cancer cell lines to chemotherapeutic agents. However, since Ape1 is a multifunctional protein, removing it from cells not only inhibits its DNA repair activity but also impairs its other functions. Our hypothesis is that a small molecule inhibitor of the DNA repair activity of Ape1 will help elucidate the importance (role) of its repair function in cancer progression as wells as tumor drug response and will also give us a pharmacological tool to enhance cancer cells’ sensitivity to chemotherapy. In order to discover an inhibitor of Ape1’s DNA repair function, a fluorescence-based high-throughput screening (HTS) assay was used to screen a library of drug-like compounds. Four distinct compounds (AR01, 02, 03 and 06) that inhibited Ape1’s DNA repair activity were identified. All four compounds inhibited the DNA repair activity of purified Ape1 protein and also inhibited Ape1’s activity in cellular extracts. Based on these and other in vitro studies, AR03 was utilized in cell culture-based assays to test our hypothesis that inhibition of the DNA repair activity of Ape1 would sensitize cancer cells to chemotherapeutic agents. The SF767 glioblastoma cell line was used in our assays as the chemotherapeutic agents used to treat gliobastomas induce lesions repaired by the BER pathway. AR03 is cytotoxic to SF767 glioblastoma cancer cells as a single agent and enhances the cytotoxicity of alkylating agents, which is consistent with Ape1’s inability to process the AP sites generated. I have identified a compound, which inhibits Ape1’s DNA repair activity and may have the potential in improving chemotherapeutic efficacy of selected chemotherapeutic agents as well as to help us understand better the role of Ape1’s repair function as opposed to its other functions in the cell.
17

Structure-function analysis of CXXC finger protein 1

Tate, Courtney Marie 26 January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This dissertation describes structure-function studies of CXXC finger protein 1 (Cfp1), encoded by the CXXC1 gene, in order to determine the functional significance of Cfp1 protein domains and properties. Cfp1 is an important regulator of chromatin structure and is essential for mammalian development. Murine embryonic stem (ES) cells lacking Cfp1 (CXXC1-/-) are viable but demonstrate a variety of defects, including hypersensitivity to DNA damaging agents, reduced plating efficiency and growth, decreased global and gene-specific cytosine methylation, failure to achieve in vitro differentiation, aberrant histone methylation, and subnuclear mis-localization of Setd1A, the catalytic component of a histone H3K4 methyltransferase complex, and tri-methylated histone H3K4 (H3K4me3) with regions of heterochromatin. Expression of wild-type Cfp1 in CXXC1-/- ES cells rescues the observed defects, thereby providing a convenient method to assess structure-function relationships of Cfp1. Cfp1 cDNA expression constructs were stably transfected into CXXC1-/- ES cells to evaluate the ability of various Cfp1 fragments and mutations to rescue the CXXC1-/- ES cell phenotype. These experiments revealed that expression of either the amino half of Cfp1 (amino acids 1-367) or the carboxyl half of Cfp1 (amino acids 361-656) is sufficient to rescue the hypersensitivity to DNA damaging agents, plating efficiency, cytosine and histone methylation, and differentiation defects. These results reveal that Cfp1 contains redundant functional domains for appropriate regulation of cytosine methylation, histone methylation, and in vitro differentiation. Additional studies revealed that a point mutation (C169A) that abolishes DNA-binding activity of Cfp1 ablates the rescue activity of the 1-367 fragment, and a point mutation (C375A) that abolishes the interaction of Cfp1 with the Setd1A and Setd1B histone H3K4 methyltransferase complexes ablates the rescue activity of the 361-656 Cfp1 fragment. In addition, introduction of both point mutations (C169A and C375A) ablates the rescue activity of the full-length Cfp1 protein. These results indicate that retention of either DNA-binding or Setd1 association of Cfp1 is required to rescue hypersensitivity to DNA damaging agents, plating efficiency, cytosine and histone methylation, and in vitro differentiation. In contrast, confocal immunofluorescence analysis revealed that full-length Cfp1 is required to restrict Setd1A and histone H3K4me3 to euchromatic regions.

Page generated in 0.0277 seconds