1 |
A SYSTEMS APPROACH TO THE DESIGN OF A PARCEL RECEIVING SYSTEM.Wilson, Dennis C. January 1983 (has links)
No description available.
|
2 |
Complex medical event detection using temporal constraint reasoningGao, Feng January 2010 (has links)
The Neonatal Intensive Care Unit (NICU) is a hospital ward specializing in looking after premature and ill newborn babies. Working in such a busy and complex environment is not easy and sophisticated equipment is used to help the daily work of the medical staff . Computers are used to analyse the large amount of monitored data and extract hidden information, e.g. to detect interesting events. Unfortunately, one group of important events lacks features that are recognizable by computers. This group includes the actions taken by the medical sta , for example two actions related to the respiratory system: inserting an endotracheal tube into a baby’s trachea (ET Intubating) or sucking out the tube (ET Suctioning). These events are very important building blocks for other computer applications aimed at helping the sta . In this research, a strategy for detecting these medical actions based on contextual knowledge is proposed. This contextual knowledge specifies what other events normally occur with each target event and how they are temporally related to each other. The idea behind this strategy is that all medical actions are taken for di erent purposes hence may have di erent procedures (contextual knowledge) for performing them. This contextual knowledge is modelled using a point based framework with special attention given to various types of uncertainty. Event detection consists in searching for consistent matching between a model based on the contextual knowledge and the observed event instances - a Temporal Constraint Satisfaction Problem (TCSP). The strategy is evaluated by detecting ET Intubating and ET Suctioning events, using a specially collected NICU monitoring dataset. The results of this evaluation are encouraging and show that the strategy is capable of detecting complex events in an NICU.
|
3 |
Optimisation de la gestion des données pour les applications MapReduce sur des infrastructures distribuées à grande échelleMoise, Diana Maria 16 December 2011 (has links) (PDF)
Les applications data-intensive sont largement utilisées au sein de domaines diverses dans le but d'extraire et de traiter des informations, de concevoir des systèmes complexes, d'effectuer des simulations de modèles réels, etc. Ces applications posent des défis complexes tant en termes de stockage que de calcul. Dans le contexte des applications data-intensive, nous nous concentrons sur le paradigme MapReduce et ses mises en oeuvre. Introduite par Google, l'abstraction MapReduce a révolutionné la communauté intensif de données et s'est rapidement étendue à diverses domaines de recherche et de production. Une implémentation domaine publique de l'abstraction mise en avant par Google, a été fournie par Yahoo à travers du project Hadoop. Le framework Hadoop est considéré l'implémentation de référence de MapReduce et est actuellement largement utilisé à des fins diverses et sur plusieurs infrastructures. Nous proposons un système de fichiers distribué, optimisé pour des accès hautement concurrents, qui puisse servir comme couche de stockage pour des applications MapReduce. Nous avons conçu le BlobSeer File System (BSFS), basé sur BlobSeer, un service de stockage distribué, hautement efficace, facilitant le partage de données à grande échelle. Nous étudions également plusieurs aspects liés à la gestion des données intermédiaires dans des environnements MapReduce. Nous explorons les contraintes des données intermédiaires MapReduce à deux niveaux: dans le même job MapReduce et pendant l'exécution des pipelines d'applications MapReduce. Enfin, nous proposons des extensions de Hadoop, un environnement MapReduce populaire et open-source, comme par example le support de l'opération append. Ce travail inclut également l'évaluation et les résultats obtenus sur des infrastructures à grande échelle: grilles informatiques et clouds.
|
4 |
Memory-Efficient Frequent-Itemset MiningSchlegel, Benjamin, Gemulla, Rainer, Lehner, Wolfgang 15 September 2022 (has links)
Efficient discovery of frequent itemsets in large datasets is a key component of many data mining tasks. In-core algorithms---which operate entirely in main memory and avoid expensive disk accesses---and in particular the prefix tree-based algorithm FP-growth are generally among the most efficient of the available algorithms. Unfortunately, their excessive memory requirements render them inapplicable for large datasets with many distinct items and/or itemsets of high cardinality. To overcome this limitation, we propose two novel data structures---the CFP-tree and the CFP-array---, which reduce memory consumption by about an order of magnitude. This allows us to process significantly larger datasets in main memory than previously possible. Our data structures are based on structural modifications of the prefix tree that increase compressability, an optimized physical representation, lightweight compression techniques, and intelligent node ordering and indexing. Experiments with both real-world and synthetic datasets show the effectiveness of our approach.
|
5 |
Optimisation de la gestion des données pour les applications MapReduce sur des infrastructures distribuées à grande échelleMoise, Diana 16 December 2011 (has links) (PDF)
Les applications data-intensive sont largement utilisées au sein de domaines diverses dans le but d'extraire et de traiter des informations, de concevoir des systèmes complexes, d'effectuer des simulations de modèles réels, etc. Ces applications posent des défis complexes tant en termes de stockage que de calcul. Dans le contexte des applications data-intensive, nous nous concentrons sur le paradigme MapReduce et ses mises en oeuvre. Introduite par Google, l'abstraction MapReduce a révolutionné la communauté data-intensive et s'est rapidement étendue à diverses domaines de recherche et de production. Une implémentation domaine publique de l'abstraction mise en avant par Google a été fournie par Yahoo à travers du project Hadoop. Le framework Hadoop est considéré l'implémentation de référence de MapReduce et est actuellement largement utilisé à des fins diverses et sur plusieurs infrastructures. Nous proposons un système de fichiers distribué, optimisé pour des accès hautement concurrents, qui puisse servir comme couche de stockage pour des applications MapReduce. Nous avons conçu le BlobSeer File System (BSFS), basé sur BlobSeer, un service de stockage distribué, hautement efficace, facilitant le partage de données à grande échelle. Nous étudions également plusieurs aspects liés à la gestion des données intermédiaires dans des environnements MapReduce. Nous explorons les contraintes des données intermédiaires MapReduce à deux niveaux: dans le même job MapReduce et pendant l'exécution des pipelines d'applications MapReduce. Enfin, nous proposons des extensions de Hadoop, un environnement MapReduce populaire et open-source, comme par example le support de l'opération append. Ce travail inclut également l'évaluation et les résultats obtenus sur des infrastructures à grande échelle: grilles informatiques et clouds.
|
6 |
Using Cloud Technologies to Optimize Data-Intensive Service ApplicationsLehner, Wolfgang, Habich, Dirk, Richly, Sebastian, Assmann, Uwe 01 November 2022 (has links)
The role of data analytics increases in several application domains to cope with the large amount of captured data. Generally, data analytics are data-intensive processes, whose efficient execution is a challenging task. Each process consists of a collection of related structured activities, where huge data sets have to be exchanged between several loosely coupled services. The implementation of such processes in a service-oriented environment offers some advantages, but the efficient realization of data flows is difficult. Therefore, we use this paper to propose a novel SOA-aware approach with a special focus on the data flow. The tight interaction of new cloud technologies with SOA technologies enables us to optimize the execution of data-intensive service applications by reducing the data exchange tasks to a minimum. Fundamentally, our core concept to optimize the data flows is found in data clouds. Moreover, we can exploit our approach to derive efficient process execution strategies regarding different optimization objectives for the data flows.
|
7 |
Optimizing data management for MapReduce applications on large-scale distributed infrastructures / Optimisation de la gestion des données pour les applications MapReduce sur des infrastructures distribuées à grande échelleMoise, Diana Maria 16 December 2011 (has links)
Les applications data-intensive sont largement utilisées au sein de domaines diverses dans le but d'extraire et de traiter des informations, de concevoir des systèmes complexes, d'effectuer des simulations de modèles réels, etc. Ces applications posent des défis complexes tant en termes de stockage que de calcul. Dans le contexte des applications data-intensive, nous nous concentrons sur le paradigme MapReduce et ses mises en oeuvre. Introduite par Google, l'abstraction MapReduce a révolutionné la communauté intensif de données et s'est rapidement étendue à diverses domaines de recherche et de production. Une implémentation domaine publique de l'abstraction mise en avant par Google, a été fournie par Yahoo à travers du project Hadoop. Le framework Hadoop est considéré l'implémentation de référence de MapReduce et est actuellement largement utilisé à des fins diverses et sur plusieurs infrastructures. Nous proposons un système de fichiers distribué, optimisé pour des accès hautement concurrents, qui puisse servir comme couche de stockage pour des applications MapReduce. Nous avons conçu le BlobSeer File System (BSFS), basé sur BlobSeer, un service de stockage distribué, hautement efficace, facilitant le partage de données à grande échelle. Nous étudions également plusieurs aspects liés à la gestion des données intermédiaires dans des environnements MapReduce. Nous explorons les contraintes des données intermédiaires MapReduce à deux niveaux: dans le même job MapReduce et pendant l'exécution des pipelines d'applications MapReduce. Enfin, nous proposons des extensions de Hadoop, un environnement MapReduce populaire et open-source, comme par example le support de l'opération append. Ce travail inclut également l'évaluation et les résultats obtenus sur des infrastructures à grande échelle: grilles informatiques et clouds. / Data-intensive applications are nowadays, widely used in various domains to extract and process information, to design complex systems, to perform simulations of real models, etc. These applications exhibit challenging requirements in terms of both storage and computation. Specialized abstractions like Google’s MapReduce were developed to efficiently manage the workloads of data-intensive applications. The MapReduce abstraction has revolutionized the data-intensive community and has rapidly spread to various research and production areas. An open-source implementation of Google's abstraction was provided by Yahoo! through the Hadoop project. This framework is considered the reference MapReduce implementation and is currently heavily used for various purposes and on several infrastructures. To achieve high-performance MapReduce processing, we propose a concurrency-optimized file system for MapReduce Frameworks. As a starting point, we rely on BlobSeer, a framework that was designed as a solution to the challenge of efficiently storing data generated by data-intensive applications running at large scales. We have built the BlobSeer File System (BSFS), with the goal of providing high throughput under heavy concurrency to MapReduce applications. We also study several aspects related to intermediate data management in MapReduce frameworks. We investigate the requirements of MapReduce intermediate data at two levels: inside the same job, and during the execution of pipeline applications. Finally, we show how BSFS can enable extensions to the de facto MapReduce implementation, Hadoop, such as the support for the append operation. This work also comprises the evaluation and the obtained results in the context of grid and cloud environments.
|
Page generated in 0.1194 seconds