Spelling suggestions: "subject:"applications dess méthodes dde criblage"" "subject:"applications dess méthodes dee criblage""
1 |
Strings of congruent primes in short intervalsFreiberg, Tristan 11 1900 (has links)
Soit $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ la suite des nombres premiers, et soient $q \ge 3$ et $a$ des entiers premiers entre eux. R\'ecemment, Daniel Shiu a d\'emontr\'e une ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjectur\'e qu'il existe une infinit\'e de couples $p_n,p_$ de premiers cons\'ecutifs tels que $p_n \equiv p_{n+1} \equiv a \bmod q$. Fixons $\epsilon > 0$. Une r\'ecente perc\'ee majeure, de Daniel Goldston, J\`anos Pintz et Cem Y{\i}ld{\i}r{\i}m, a \'et\'e de d\'emontrer qu'il existe une suite de nombres r\'eels $x$ tendant vers l'infini, tels que l'intervalle $(x,x+\epsilon\log x]$ contienne au moins deux nombres premiers $\equiv a \bmod q$. \'Etant donn\'e un couple de nombres premiers $\equiv a \bmod q$ dans un tel intervalle, il pourrait exister un nombre premier compris entre les deux qui n'est pas $\equiv a \bmod q$. On peut d\'eduire que soit il existe une suite de r\'eels $x$ tendant vers l'infini, telle que $(x,x+\epsilon\log x]$ contienne un triplet $p_n,p_{n+1},p_{n+2}$ de nombres premiers cons\'ecutifs, soit il existe une suite de r\'eels $x$, tendant vers l'infini telle que l'intervalle $(x,x+\epsilon\log x]$ contienne un couple $p_n,p_{n+1}$ de nombres premiers tel que $p_n \equiv p_{n+1} \equiv a \bmod q$. On pense que les deux \'enonc\'es sont vrais, toutefois on peut seulement d\'eduire que l'un d'entre eux est vrai, sans savoir lequel.
Dans la premi\`ere partie de cette th\`ese, nous d\'emontrons que le deuxi\`eme \'enonc\'e est vrai, ce qui fournit une nouvelle d\'emonstration de la conjecture de Chowla. La preuve combine des id\'ees de Shiu et de Goldston-Pintz-Y{\i}ld{\i}r{\i}m, donc on peut consid\'erer que ce r\'esultat est une application de leurs m\'thodes. Ensuite, nous fournirons des bornes inf\'erieures pour le nombre de couples $p_n,p_{n+1}$ tels que $p_n \equiv p_{n+1} \equiv a \bmod q$, $p_{n+1} - p_n < \epsilon\log p_n$, avec $p_{n+1} \le Y$.
Sous l'hypoth\`ese que $\theta$, le \og niveau de distribution \fg{} des nombres premiers, est plus grand que $1/2$, Goldston-Pintz-Y{\i}ld{\i}r{\i}m ont r\'eussi \`a d\'emontrer que $p_{n+1} - p_n \ll_{\theta} 1$ pour une infinit\'e de couples $p_n,p_$. Sous la meme hypoth\`ese, nous d\'emontrerons que $p_{n+1} - p_n \ll_{q,\theta} 1$ et $p_n \equiv p_{n+1} \equiv a \bmod q$ pour une infinit\'e de couples $p_n,p_$, et nous prouverons \'egalement un r\'esultat quantitatif.
Dans la deuxi\`eme partie, nous allons utiliser les techniques de Goldston-Pintz-Yldrm pour d\'emontrer qu'il existe une infinit\'e de couples de nombres premiers $p,p'$ tels que $(p-1)(p'-1)$ est une carr\'e parfait. Ce resultat est une version approximative d'une ancienne conjecture qui stipule qu'il existe une infinit\'e de nombres premiers $p$ tels que $p-1$ est une carr\'e parfait. En effet, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $n = \ell_1\cdots \ell_r$, avec $\ell_1,\ldots,\ell_r$ des premiers distincts, et tels que $(\ell_1-1)\cdots (\ell_r-1)$ est une puissance $r$-i\`eme, avec $r \ge 2$ quelconque. \'Egalement, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n = \ell_1\cdots \ell_r \le Y$ tels que $(\ell_1+1)\cdots (\ell_r+1)$ est une puissance $r$-i\`eme. Finalement, \'etant donn\'e $A$ un ensemble fini d'entiers non-nuls, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $\prod_ (p+a)$ est une puissance $r$-i\`eme, simultan\'ement pour chaque $a \in A$. / Let $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ be the sequence of all primes, and let $q \ge 3$ and $a$ be coprime integers. Recently, and very remarkably, Daniel Shiu proved an old conjecture of Sarvadaman Chowla, which asserts that there are infinitely many pairs of consecutive primes $p_n,p_{n+1}$ for which $p_n \equiv p_{n+1} \equiv a \bmod q$. Now fix a number $\epsilon > 0$, arbitrarily small. In their recent groundbreaking work, Daniel Goldston, J\`anos Pintz and Cem Y{\i}ld{\i}r{\i}m proved that there are arbitrarily large $x$ for which the short interval $(x, x + \epsilon\log x]$ contains at least two primes congruent to $a \bmod q$. Given a pair of primes $\equiv a \bmod q$ in such an interval, there might be a prime in-between them that is not $\equiv a \bmod q$. One can deduce that \emph{either} there are arbitrarily large $x$ for which $(x, x + \epsilon\log x]$ contains a prime pair $p_n \equiv p_{n+1} \equiv a \bmod q$, \emph{or} that there are arbitrarily large $x$ for which the $(x, x + \epsilon\log x]$ contains a triple of consecutive primes $p_n,p_{n+1},p_{n+2}$. Both statements are believed to be true, but one can only deduce that one of them is true, and one does not know which one, from the result of Goldston-Pintz-Y{\i}ld{\i}r{\i}m.
In Part I of this thesis, we prove that the first of these alternatives is true, thus obtaining a new proof of Chowla's conjecture. The proof combines some of Shiu's ideas with those of Goldston-Pintz-Y{\i}ld{\i}r{\i}m, and so this result may be regarded as an application of their method. We then establish lower bounds for the number of prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n < \epsilon\log p_n$ and $p_{n+1} \le Y$. Assuming a certain unproven hypothesis concerning what is referred to as the `level of distribution', $\theta$, of the primes, Goldston-Pintz-Y{\i}ld{\i}r{\i}m were able to prove that $p_{n+1} - p_n \ll_{\theta} 1$ for infinitely many $n$. On the same hypothesis, we prove that there are infinitely many prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n \ll_{q,\theta} 1$. This conditional result is also proved in a quantitative form.
In Part II we apply the techniques of Goldston-Pintz-Y{\i}ld{\i}r{\i}m to prove another result, namely that there are infinitely many pairs of distinct primes $p,p'$ such that $(p-1)(p'-1)$ is a perfect square. This is, in a sense, an `approximation' to the old conjecture that there are infinitely many primes $p$ such that $p-1$ is a perfect square. In fact we obtain a lower bound for the number of integers $n$, up to $Y$, such that $n = \ell_1\cdots \ell_r$, the $\ell_i$ distinct primes, and $(\ell_1 - 1)\cdots (\ell_r - 1)$ is a perfect $r$th power, for any given $r \ge 2$. We likewise obtain a lower bound for the number of such $n \le Y$ for which $(\ell_1 + 1)\cdots (\ell_r + 1)$ is a perfect $r$th power. Finally, given a finite set $A$ of nonzero integers, we obtain a lower bound for the number of $n \le Y$ for which $\prod_{p \mid n}(p+a)$ is a perfect $r$th power, simultaneously for every $a \in A$.
|
2 |
Strings of congruent primes in short intervalsFreiberg, Tristan 11 1900 (has links)
Soit $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ la suite des nombres premiers, et soient $q \ge 3$ et $a$ des entiers premiers entre eux. R\'ecemment, Daniel Shiu a d\'emontr\'e une ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjectur\'e qu'il existe une infinit\'e de couples $p_n,p_$ de premiers cons\'ecutifs tels que $p_n \equiv p_{n+1} \equiv a \bmod q$. Fixons $\epsilon > 0$. Une r\'ecente perc\'ee majeure, de Daniel Goldston, J\`anos Pintz et Cem Y{\i}ld{\i}r{\i}m, a \'et\'e de d\'emontrer qu'il existe une suite de nombres r\'eels $x$ tendant vers l'infini, tels que l'intervalle $(x,x+\epsilon\log x]$ contienne au moins deux nombres premiers $\equiv a \bmod q$. \'Etant donn\'e un couple de nombres premiers $\equiv a \bmod q$ dans un tel intervalle, il pourrait exister un nombre premier compris entre les deux qui n'est pas $\equiv a \bmod q$. On peut d\'eduire que soit il existe une suite de r\'eels $x$ tendant vers l'infini, telle que $(x,x+\epsilon\log x]$ contienne un triplet $p_n,p_{n+1},p_{n+2}$ de nombres premiers cons\'ecutifs, soit il existe une suite de r\'eels $x$, tendant vers l'infini telle que l'intervalle $(x,x+\epsilon\log x]$ contienne un couple $p_n,p_{n+1}$ de nombres premiers tel que $p_n \equiv p_{n+1} \equiv a \bmod q$. On pense que les deux \'enonc\'es sont vrais, toutefois on peut seulement d\'eduire que l'un d'entre eux est vrai, sans savoir lequel.
Dans la premi\`ere partie de cette th\`ese, nous d\'emontrons que le deuxi\`eme \'enonc\'e est vrai, ce qui fournit une nouvelle d\'emonstration de la conjecture de Chowla. La preuve combine des id\'ees de Shiu et de Goldston-Pintz-Y{\i}ld{\i}r{\i}m, donc on peut consid\'erer que ce r\'esultat est une application de leurs m\'thodes. Ensuite, nous fournirons des bornes inf\'erieures pour le nombre de couples $p_n,p_{n+1}$ tels que $p_n \equiv p_{n+1} \equiv a \bmod q$, $p_{n+1} - p_n < \epsilon\log p_n$, avec $p_{n+1} \le Y$.
Sous l'hypoth\`ese que $\theta$, le \og niveau de distribution \fg{} des nombres premiers, est plus grand que $1/2$, Goldston-Pintz-Y{\i}ld{\i}r{\i}m ont r\'eussi \`a d\'emontrer que $p_{n+1} - p_n \ll_{\theta} 1$ pour une infinit\'e de couples $p_n,p_$. Sous la meme hypoth\`ese, nous d\'emontrerons que $p_{n+1} - p_n \ll_{q,\theta} 1$ et $p_n \equiv p_{n+1} \equiv a \bmod q$ pour une infinit\'e de couples $p_n,p_$, et nous prouverons \'egalement un r\'esultat quantitatif.
Dans la deuxi\`eme partie, nous allons utiliser les techniques de Goldston-Pintz-Yldrm pour d\'emontrer qu'il existe une infinit\'e de couples de nombres premiers $p,p'$ tels que $(p-1)(p'-1)$ est une carr\'e parfait. Ce resultat est une version approximative d'une ancienne conjecture qui stipule qu'il existe une infinit\'e de nombres premiers $p$ tels que $p-1$ est une carr\'e parfait. En effet, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $n = \ell_1\cdots \ell_r$, avec $\ell_1,\ldots,\ell_r$ des premiers distincts, et tels que $(\ell_1-1)\cdots (\ell_r-1)$ est une puissance $r$-i\`eme, avec $r \ge 2$ quelconque. \'Egalement, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n = \ell_1\cdots \ell_r \le Y$ tels que $(\ell_1+1)\cdots (\ell_r+1)$ est une puissance $r$-i\`eme. Finalement, \'etant donn\'e $A$ un ensemble fini d'entiers non-nuls, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $\prod_ (p+a)$ est une puissance $r$-i\`eme, simultan\'ement pour chaque $a \in A$. / Let $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ be the sequence of all primes, and let $q \ge 3$ and $a$ be coprime integers. Recently, and very remarkably, Daniel Shiu proved an old conjecture of Sarvadaman Chowla, which asserts that there are infinitely many pairs of consecutive primes $p_n,p_{n+1}$ for which $p_n \equiv p_{n+1} \equiv a \bmod q$. Now fix a number $\epsilon > 0$, arbitrarily small. In their recent groundbreaking work, Daniel Goldston, J\`anos Pintz and Cem Y{\i}ld{\i}r{\i}m proved that there are arbitrarily large $x$ for which the short interval $(x, x + \epsilon\log x]$ contains at least two primes congruent to $a \bmod q$. Given a pair of primes $\equiv a \bmod q$ in such an interval, there might be a prime in-between them that is not $\equiv a \bmod q$. One can deduce that \emph{either} there are arbitrarily large $x$ for which $(x, x + \epsilon\log x]$ contains a prime pair $p_n \equiv p_{n+1} \equiv a \bmod q$, \emph{or} that there are arbitrarily large $x$ for which the $(x, x + \epsilon\log x]$ contains a triple of consecutive primes $p_n,p_{n+1},p_{n+2}$. Both statements are believed to be true, but one can only deduce that one of them is true, and one does not know which one, from the result of Goldston-Pintz-Y{\i}ld{\i}r{\i}m.
In Part I of this thesis, we prove that the first of these alternatives is true, thus obtaining a new proof of Chowla's conjecture. The proof combines some of Shiu's ideas with those of Goldston-Pintz-Y{\i}ld{\i}r{\i}m, and so this result may be regarded as an application of their method. We then establish lower bounds for the number of prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n < \epsilon\log p_n$ and $p_{n+1} \le Y$. Assuming a certain unproven hypothesis concerning what is referred to as the `level of distribution', $\theta$, of the primes, Goldston-Pintz-Y{\i}ld{\i}r{\i}m were able to prove that $p_{n+1} - p_n \ll_{\theta} 1$ for infinitely many $n$. On the same hypothesis, we prove that there are infinitely many prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n \ll_{q,\theta} 1$. This conditional result is also proved in a quantitative form.
In Part II we apply the techniques of Goldston-Pintz-Y{\i}ld{\i}r{\i}m to prove another result, namely that there are infinitely many pairs of distinct primes $p,p'$ such that $(p-1)(p'-1)$ is a perfect square. This is, in a sense, an `approximation' to the old conjecture that there are infinitely many primes $p$ such that $p-1$ is a perfect square. In fact we obtain a lower bound for the number of integers $n$, up to $Y$, such that $n = \ell_1\cdots \ell_r$, the $\ell_i$ distinct primes, and $(\ell_1 - 1)\cdots (\ell_r - 1)$ is a perfect $r$th power, for any given $r \ge 2$. We likewise obtain a lower bound for the number of such $n \le Y$ for which $(\ell_1 + 1)\cdots (\ell_r + 1)$ is a perfect $r$th power. Finally, given a finite set $A$ of nonzero integers, we obtain a lower bound for the number of $n \le Y$ for which $\prod_{p \mid n}(p+a)$ is a perfect $r$th power, simultaneously for every $a \in A$.
|
Page generated in 0.171 seconds