• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strings of congruent primes in short intervals

Freiberg, Tristan 11 1900 (has links)
Soit $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ la suite des nombres premiers, et soient $q \ge 3$ et $a$ des entiers premiers entre eux. R\'ecemment, Daniel Shiu a d\'emontr\'e une ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjectur\'e qu'il existe une infinit\'e de couples $p_n,p_$ de premiers cons\'ecutifs tels que $p_n \equiv p_{n+1} \equiv a \bmod q$. Fixons $\epsilon > 0$. Une r\'ecente perc\'ee majeure, de Daniel Goldston, J\`anos Pintz et Cem Y{\i}ld{\i}r{\i}m, a \'et\'e de d\'emontrer qu'il existe une suite de nombres r\'eels $x$ tendant vers l'infini, tels que l'intervalle $(x,x+\epsilon\log x]$ contienne au moins deux nombres premiers $\equiv a \bmod q$. \'Etant donn\'e un couple de nombres premiers $\equiv a \bmod q$ dans un tel intervalle, il pourrait exister un nombre premier compris entre les deux qui n'est pas $\equiv a \bmod q$. On peut d\'eduire que soit il existe une suite de r\'eels $x$ tendant vers l'infini, telle que $(x,x+\epsilon\log x]$ contienne un triplet $p_n,p_{n+1},p_{n+2}$ de nombres premiers cons\'ecutifs, soit il existe une suite de r\'eels $x$, tendant vers l'infini telle que l'intervalle $(x,x+\epsilon\log x]$ contienne un couple $p_n,p_{n+1}$ de nombres premiers tel que $p_n \equiv p_{n+1} \equiv a \bmod q$. On pense que les deux \'enonc\'es sont vrais, toutefois on peut seulement d\'eduire que l'un d'entre eux est vrai, sans savoir lequel. Dans la premi\`ere partie de cette th\`ese, nous d\'emontrons que le deuxi\`eme \'enonc\'e est vrai, ce qui fournit une nouvelle d\'emonstration de la conjecture de Chowla. La preuve combine des id\'ees de Shiu et de Goldston-Pintz-Y{\i}ld{\i}r{\i}m, donc on peut consid\'erer que ce r\'esultat est une application de leurs m\'thodes. Ensuite, nous fournirons des bornes inf\'erieures pour le nombre de couples $p_n,p_{n+1}$ tels que $p_n \equiv p_{n+1} \equiv a \bmod q$, $p_{n+1} - p_n < \epsilon\log p_n$, avec $p_{n+1} \le Y$. Sous l'hypoth\`ese que $\theta$, le \og niveau de distribution \fg{} des nombres premiers, est plus grand que $1/2$, Goldston-Pintz-Y{\i}ld{\i}r{\i}m ont r\'eussi \`a d\'emontrer que $p_{n+1} - p_n \ll_{\theta} 1$ pour une infinit\'e de couples $p_n,p_$. Sous la meme hypoth\`ese, nous d\'emontrerons que $p_{n+1} - p_n \ll_{q,\theta} 1$ et $p_n \equiv p_{n+1} \equiv a \bmod q$ pour une infinit\'e de couples $p_n,p_$, et nous prouverons \'egalement un r\'esultat quantitatif. Dans la deuxi\`eme partie, nous allons utiliser les techniques de Goldston-Pintz-Yldrm pour d\'emontrer qu'il existe une infinit\'e de couples de nombres premiers $p,p'$ tels que $(p-1)(p'-1)$ est une carr\'e parfait. Ce resultat est une version approximative d'une ancienne conjecture qui stipule qu'il existe une infinit\'e de nombres premiers $p$ tels que $p-1$ est une carr\'e parfait. En effet, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $n = \ell_1\cdots \ell_r$, avec $\ell_1,\ldots,\ell_r$ des premiers distincts, et tels que $(\ell_1-1)\cdots (\ell_r-1)$ est une puissance $r$-i\`eme, avec $r \ge 2$ quelconque. \'Egalement, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n = \ell_1\cdots \ell_r \le Y$ tels que $(\ell_1+1)\cdots (\ell_r+1)$ est une puissance $r$-i\`eme. Finalement, \'etant donn\'e $A$ un ensemble fini d'entiers non-nuls, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $\prod_ (p+a)$ est une puissance $r$-i\`eme, simultan\'ement pour chaque $a \in A$. / Let $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ be the sequence of all primes, and let $q \ge 3$ and $a$ be coprime integers. Recently, and very remarkably, Daniel Shiu proved an old conjecture of Sarvadaman Chowla, which asserts that there are infinitely many pairs of consecutive primes $p_n,p_{n+1}$ for which $p_n \equiv p_{n+1} \equiv a \bmod q$. Now fix a number $\epsilon > 0$, arbitrarily small. In their recent groundbreaking work, Daniel Goldston, J\`anos Pintz and Cem Y{\i}ld{\i}r{\i}m proved that there are arbitrarily large $x$ for which the short interval $(x, x + \epsilon\log x]$ contains at least two primes congruent to $a \bmod q$. Given a pair of primes $\equiv a \bmod q$ in such an interval, there might be a prime in-between them that is not $\equiv a \bmod q$. One can deduce that \emph{either} there are arbitrarily large $x$ for which $(x, x + \epsilon\log x]$ contains a prime pair $p_n \equiv p_{n+1} \equiv a \bmod q$, \emph{or} that there are arbitrarily large $x$ for which the $(x, x + \epsilon\log x]$ contains a triple of consecutive primes $p_n,p_{n+1},p_{n+2}$. Both statements are believed to be true, but one can only deduce that one of them is true, and one does not know which one, from the result of Goldston-Pintz-Y{\i}ld{\i}r{\i}m. In Part I of this thesis, we prove that the first of these alternatives is true, thus obtaining a new proof of Chowla's conjecture. The proof combines some of Shiu's ideas with those of Goldston-Pintz-Y{\i}ld{\i}r{\i}m, and so this result may be regarded as an application of their method. We then establish lower bounds for the number of prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n < \epsilon\log p_n$ and $p_{n+1} \le Y$. Assuming a certain unproven hypothesis concerning what is referred to as the `level of distribution', $\theta$, of the primes, Goldston-Pintz-Y{\i}ld{\i}r{\i}m were able to prove that $p_{n+1} - p_n \ll_{\theta} 1$ for infinitely many $n$. On the same hypothesis, we prove that there are infinitely many prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n \ll_{q,\theta} 1$. This conditional result is also proved in a quantitative form. In Part II we apply the techniques of Goldston-Pintz-Y{\i}ld{\i}r{\i}m to prove another result, namely that there are infinitely many pairs of distinct primes $p,p'$ such that $(p-1)(p'-1)$ is a perfect square. This is, in a sense, an `approximation' to the old conjecture that there are infinitely many primes $p$ such that $p-1$ is a perfect square. In fact we obtain a lower bound for the number of integers $n$, up to $Y$, such that $n = \ell_1\cdots \ell_r$, the $\ell_i$ distinct primes, and $(\ell_1 - 1)\cdots (\ell_r - 1)$ is a perfect $r$th power, for any given $r \ge 2$. We likewise obtain a lower bound for the number of such $n \le Y$ for which $(\ell_1 + 1)\cdots (\ell_r + 1)$ is a perfect $r$th power. Finally, given a finite set $A$ of nonzero integers, we obtain a lower bound for the number of $n \le Y$ for which $\prod_{p \mid n}(p+a)$ is a perfect $r$th power, simultaneously for every $a \in A$.
2

Strings of congruent primes in short intervals

Freiberg, Tristan 11 1900 (has links)
Soit $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ la suite des nombres premiers, et soient $q \ge 3$ et $a$ des entiers premiers entre eux. R\'ecemment, Daniel Shiu a d\'emontr\'e une ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjectur\'e qu'il existe une infinit\'e de couples $p_n,p_$ de premiers cons\'ecutifs tels que $p_n \equiv p_{n+1} \equiv a \bmod q$. Fixons $\epsilon > 0$. Une r\'ecente perc\'ee majeure, de Daniel Goldston, J\`anos Pintz et Cem Y{\i}ld{\i}r{\i}m, a \'et\'e de d\'emontrer qu'il existe une suite de nombres r\'eels $x$ tendant vers l'infini, tels que l'intervalle $(x,x+\epsilon\log x]$ contienne au moins deux nombres premiers $\equiv a \bmod q$. \'Etant donn\'e un couple de nombres premiers $\equiv a \bmod q$ dans un tel intervalle, il pourrait exister un nombre premier compris entre les deux qui n'est pas $\equiv a \bmod q$. On peut d\'eduire que soit il existe une suite de r\'eels $x$ tendant vers l'infini, telle que $(x,x+\epsilon\log x]$ contienne un triplet $p_n,p_{n+1},p_{n+2}$ de nombres premiers cons\'ecutifs, soit il existe une suite de r\'eels $x$, tendant vers l'infini telle que l'intervalle $(x,x+\epsilon\log x]$ contienne un couple $p_n,p_{n+1}$ de nombres premiers tel que $p_n \equiv p_{n+1} \equiv a \bmod q$. On pense que les deux \'enonc\'es sont vrais, toutefois on peut seulement d\'eduire que l'un d'entre eux est vrai, sans savoir lequel. Dans la premi\`ere partie de cette th\`ese, nous d\'emontrons que le deuxi\`eme \'enonc\'e est vrai, ce qui fournit une nouvelle d\'emonstration de la conjecture de Chowla. La preuve combine des id\'ees de Shiu et de Goldston-Pintz-Y{\i}ld{\i}r{\i}m, donc on peut consid\'erer que ce r\'esultat est une application de leurs m\'thodes. Ensuite, nous fournirons des bornes inf\'erieures pour le nombre de couples $p_n,p_{n+1}$ tels que $p_n \equiv p_{n+1} \equiv a \bmod q$, $p_{n+1} - p_n < \epsilon\log p_n$, avec $p_{n+1} \le Y$. Sous l'hypoth\`ese que $\theta$, le \og niveau de distribution \fg{} des nombres premiers, est plus grand que $1/2$, Goldston-Pintz-Y{\i}ld{\i}r{\i}m ont r\'eussi \`a d\'emontrer que $p_{n+1} - p_n \ll_{\theta} 1$ pour une infinit\'e de couples $p_n,p_$. Sous la meme hypoth\`ese, nous d\'emontrerons que $p_{n+1} - p_n \ll_{q,\theta} 1$ et $p_n \equiv p_{n+1} \equiv a \bmod q$ pour une infinit\'e de couples $p_n,p_$, et nous prouverons \'egalement un r\'esultat quantitatif. Dans la deuxi\`eme partie, nous allons utiliser les techniques de Goldston-Pintz-Yldrm pour d\'emontrer qu'il existe une infinit\'e de couples de nombres premiers $p,p'$ tels que $(p-1)(p'-1)$ est une carr\'e parfait. Ce resultat est une version approximative d'une ancienne conjecture qui stipule qu'il existe une infinit\'e de nombres premiers $p$ tels que $p-1$ est une carr\'e parfait. En effet, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $n = \ell_1\cdots \ell_r$, avec $\ell_1,\ldots,\ell_r$ des premiers distincts, et tels que $(\ell_1-1)\cdots (\ell_r-1)$ est une puissance $r$-i\`eme, avec $r \ge 2$ quelconque. \'Egalement, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n = \ell_1\cdots \ell_r \le Y$ tels que $(\ell_1+1)\cdots (\ell_r+1)$ est une puissance $r$-i\`eme. Finalement, \'etant donn\'e $A$ un ensemble fini d'entiers non-nuls, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $\prod_ (p+a)$ est une puissance $r$-i\`eme, simultan\'ement pour chaque $a \in A$. / Let $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ be the sequence of all primes, and let $q \ge 3$ and $a$ be coprime integers. Recently, and very remarkably, Daniel Shiu proved an old conjecture of Sarvadaman Chowla, which asserts that there are infinitely many pairs of consecutive primes $p_n,p_{n+1}$ for which $p_n \equiv p_{n+1} \equiv a \bmod q$. Now fix a number $\epsilon > 0$, arbitrarily small. In their recent groundbreaking work, Daniel Goldston, J\`anos Pintz and Cem Y{\i}ld{\i}r{\i}m proved that there are arbitrarily large $x$ for which the short interval $(x, x + \epsilon\log x]$ contains at least two primes congruent to $a \bmod q$. Given a pair of primes $\equiv a \bmod q$ in such an interval, there might be a prime in-between them that is not $\equiv a \bmod q$. One can deduce that \emph{either} there are arbitrarily large $x$ for which $(x, x + \epsilon\log x]$ contains a prime pair $p_n \equiv p_{n+1} \equiv a \bmod q$, \emph{or} that there are arbitrarily large $x$ for which the $(x, x + \epsilon\log x]$ contains a triple of consecutive primes $p_n,p_{n+1},p_{n+2}$. Both statements are believed to be true, but one can only deduce that one of them is true, and one does not know which one, from the result of Goldston-Pintz-Y{\i}ld{\i}r{\i}m. In Part I of this thesis, we prove that the first of these alternatives is true, thus obtaining a new proof of Chowla's conjecture. The proof combines some of Shiu's ideas with those of Goldston-Pintz-Y{\i}ld{\i}r{\i}m, and so this result may be regarded as an application of their method. We then establish lower bounds for the number of prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n < \epsilon\log p_n$ and $p_{n+1} \le Y$. Assuming a certain unproven hypothesis concerning what is referred to as the `level of distribution', $\theta$, of the primes, Goldston-Pintz-Y{\i}ld{\i}r{\i}m were able to prove that $p_{n+1} - p_n \ll_{\theta} 1$ for infinitely many $n$. On the same hypothesis, we prove that there are infinitely many prime pairs $p_n \equiv p_{n+1} \equiv a \bmod q$ with $p_{n+1} - p_n \ll_{q,\theta} 1$. This conditional result is also proved in a quantitative form. In Part II we apply the techniques of Goldston-Pintz-Y{\i}ld{\i}r{\i}m to prove another result, namely that there are infinitely many pairs of distinct primes $p,p'$ such that $(p-1)(p'-1)$ is a perfect square. This is, in a sense, an `approximation' to the old conjecture that there are infinitely many primes $p$ such that $p-1$ is a perfect square. In fact we obtain a lower bound for the number of integers $n$, up to $Y$, such that $n = \ell_1\cdots \ell_r$, the $\ell_i$ distinct primes, and $(\ell_1 - 1)\cdots (\ell_r - 1)$ is a perfect $r$th power, for any given $r \ge 2$. We likewise obtain a lower bound for the number of such $n \le Y$ for which $(\ell_1 + 1)\cdots (\ell_r + 1)$ is a perfect $r$th power. Finally, given a finite set $A$ of nonzero integers, we obtain a lower bound for the number of $n \le Y$ for which $\prod_{p \mid n}(p+a)$ is a perfect $r$th power, simultaneously for every $a \in A$.
3

Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques

Fiorilli, Daniel 08 1900 (has links)
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$. / The main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.
4

Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques

Fiorilli, Daniel 08 1900 (has links)
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$. / The main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.

Page generated in 0.1308 seconds