• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mesure de Mahler supérieure de certaines fonctions rationelles

Lechasseur, Jean-Sébastien 08 1900 (has links)
Nous exprimons la mesure de Mahler 2-supérieure et 3-supérieure de certaines fonctions rationnelles en terme de valeurs spéciales de la fonction zêta, de fonctions L et de polylogarithmes multiples. Les résultats obtenus sont une généralisation de ceux obtenus dans [10] pour la mesure de Mahler classique. On améliore un de ces résultats en réduisant une combinaison linéaire de polylogarithmes multiples en termes de valeurs spéciales de fonctions L. On termine avec la réduction complète d’un cas particuler. / The 2-higher and 3-higher Mahler measure of some rational functions are given in terms of special values of the Riemann zeta function, a Dirichlet L-function and multiple polylogarithms. Our results generalize those obtained in [10] for the classical Mahler measure. We improve one of our results by providing a reduction for a certain linear combination of multiple polylogarithms in terms of Dirichlet L-functions. We conclude by giving a complete reduction of a special case.
2

Linnik's theorem : a comparison of the classical and the pretentious approach

Matte, Joelle 12 1900 (has links)
No description available.
3

Mesure de Mahler supérieure de certaines fonctions rationelles

Lechasseur, Jean-Sébastien 08 1900 (has links)
Nous exprimons la mesure de Mahler 2-supérieure et 3-supérieure de certaines fonctions rationnelles en terme de valeurs spéciales de la fonction zêta, de fonctions L et de polylogarithmes multiples. Les résultats obtenus sont une généralisation de ceux obtenus dans [10] pour la mesure de Mahler classique. On améliore un de ces résultats en réduisant une combinaison linéaire de polylogarithmes multiples en termes de valeurs spéciales de fonctions L. On termine avec la réduction complète d’un cas particuler. / The 2-higher and 3-higher Mahler measure of some rational functions are given in terms of special values of the Riemann zeta function, a Dirichlet L-function and multiple polylogarithms. Our results generalize those obtained in [10] for the classical Mahler measure. We improve one of our results by providing a reduction for a certain linear combination of multiple polylogarithms in terms of Dirichlet L-functions. We conclude by giving a complete reduction of a special case.
4

Moments des fonctions thêta / Moments of theta functions

Munsch, Marc 12 December 2013 (has links)
On s’intéresse dans cette thèse à l’étude des fonctions thêta intervenant dans la preuve de l’équation fonctionnelle des fonctions L de Dirichlet. En particulier, on adapte certains résultats obtenus dans le cadre des fonctions L au cas des fonctions thêta. S. Chowla a conjecturé que les fonctions L de Dirichlet associées à des caractères χ primitifs ne doivent pas s’annuler au point central de leur équation fonctionnelle. De façon analogue, il est conjecturé que les fonctions thêta ne s'annulent pas au point 1. Dans le but de prouver cette conjecture pour beaucoup de caractères, on étudie les moments de fonctions thêta dans plusieurs familles. On se focalise sur deux familles importantes. La première considérée est l’ensemble des caractères de Dirichlet modulo p où p est un nombre premier. On prouve des formules asymptotiques pour les moments d'ordre 2 et 4 en se ramenant à des problèmes de nature diophantienne. La seconde famille considérée est celle des caractères primitifs et quadratiques associés à des discriminants fondamentaux d inférieurs à une certaine borne fixée. On donne une formule asymptotique pour le premier moment et une majoration pour le moment d'ordre 2 en utilisant des techniques de transformée de Mellin ainsi que des estimations sur les sommes de caractères. Dans les deux cas, on en déduit des résultats de non-annulation des fonctions thêta. On propose également un algorithme qui, pour beaucoup de caractères, se révèle en pratique efficace pour prouver la non-annulation sur l'axe réel positif des fonctions thêta ce qui entraîne la non-annulation sur le même axe des fonctions L associées. / In this thesis, we focus on the study of theta functions involved in the proof of the functional equation of Dirichlet L- functions. In particular, we adapt some results obtained for L-functions to the case of theta functions. S. Chowla conjectured that Dirichlet L- functions associated to primitive characters χ don’t vanish at the central point of their functional equation. In a similar way to Chowla’s conjecture, it is conjectured that theta functions don't vanish at the central point of their functional equation for each primitive character. With the aim of proving this conjecture for a lot of characters, we study moments of theta functions in various families. We concentrate on two important families. The first one which we consider is the family of all Dirichlet characters modulo p where p is a prime number. In this case, we prove asymptotic formulae for the second and fourth moment of theta functions using diophantine techniques. The second family which we consider is the set of primitive quadratic characters associated to a fundamental discriminant less than a fixed bound. We give an asymptotic formula for the first moment and an upper bound for the second moment using techniques of Mellin transforms and estimation of character sums. In both cases, we deduce some results of non-vanishing. We also give an algorithm which, in practice, works well for a lot of characters to prove the non-vanishing of theta functions on the positive real axis. In this case, this implies in particular that the associated L-functions don’t vanish on the same axis.
5

Mahler measure evaluations of polynomial families constructed via certain Möbius transformations

Nair, Siva Sankar 04 1900 (has links)
Les polynômes sont une entité fondamentale en mathématiques, notamment en théorie des nombres. Les fonctions de hauteur sont utilisées pour étudier les polynômes de manière systématique et, dans de nombreux cas, simplifient grandement la preuve de théorèmes complexes. Les fonctions \(L\) forment une autre classe d'objets mathématiques qui trouvent une grande importance dans la théorie des nombres. La célèbre fonction zêta de Riemann est l'un des exemples les plus connus et les plus fondamentaux d'une fonction \(L\). Cette thèse s'articule autour de la mesure de Mahler, une fonction de hauteur sur les polynômes qui apparaît souvent comme des valeurs spéciales des fonctions \(L\) et forme un lien mystérieux entre ces deux domaines de recherche. Notre objectif est d'explorer trois questions concernant la mesure de Mahler de plusieurs familles de polynômes construites via certaines transformations de Möbius. Le premier résultat, publié dans [Bull. Lond. Math. Soc. 55 (2023), 1129-1142], décrit une famille de transformations non triviales qui, appliquées à n'importe quel polynôme, donnent des polynômes de plus en plus complexes sans changer sa mesure de Mahler. Cela conduit à plusieurs identités entre la mesure de Mahler des polynômes et résout de nombreuses relations conjecturales. Dans le deuxième résultat, nous obtenons des formules explicites pour la mesure de Mahler des familles polynomiales pouvant avoir autant de variables que souhaité. Ces mesures de Mahler sont exprimées en termes de valeurs \(\zeta\) et de valeurs \(L\) correspondant au caractère primitif de Dirichlet de conducteur 3. Le résultat s'appuie sur les idées de Lalín pour construire de telles familles de \(n\)-variables dans un nouveau direction, ouvrant les portes à de nombreuses autres relations intéressantes du même genre. Ce résultat a été soumis pour publication. Enfin, notre troisième résultat, accepté pour publication, concerne la mesure de Mahler d'une autre famille de polynômes \(n\)-variables qui ont des degrés non linéaires, par opposition aux familles des travaux de Lalín et à notre deuxième résultat dans lequel chaque variable avait un degré linéaire. Ce résultat conduit à l'expression de la mesure de Mahler en termes de plusieurs polylogarithmes de longueur 2 qui sont réduits à des polylogarithmes de longueur un en utilisant des identités appropriées. Nous présentons certains exemples où ces expressions peuvent être écrites en termes de valeurs zêta et de valeurs de fonctions \(L\) de Dirichlet de caractères de conducteurs 4, 8 et 12. / Polynomials are a fundamental entity in Mathematics, especially in Number Theory. Height functions are useful tools employed to study polynomials in a systematic way and in many cases greatly simplify the proof of complex theorems. \(L\)-functions form another class of mathematical objects that find great importance in Number Theory. The celebrated Riemann zeta function is one of the most well-known and foundational examples of an \(L\)-function. This dissertation revolves around the Mahler measure - a height function on polynomials that often appears as special values of \(L\)-functions and forms a mysterious link between these two areas of research. We aim to explore three questions concerning the Mahler measure of several polynomial families that are constructed via certain Möbius transformations. The first result, published in [Bull. Lond. Math. Soc. 55 (2023), 1129-1142], describes a family of non-trivial transformations which when applied on any polynomial, yields increasingly complex polynomials without changing its Mahler measure. This leads to several identities involving the Mahler measure of polynomials and resolves many conjectural relations. In the second result, we obtain explicit formulae for the Mahler measure of polynomial families that can have as many variables as desired. These Mahler measures are expressed in terms of \(\zeta\)-values and \(L\)-values corresponding to the primitive Dirichlet character of conductor 3. The result builds on the ideas of Lalín for constructing such \(n\)-variable families in a new direction, opening the doors to possibly many more interesting relations of the same kind. This result has been submitted for publication. Finally, our third result, accepted for publication, concerns the Mahler measure of yet another \(n\)-variable polynomial family which has non-linear degree, as opposed to the families in the work of Lalín and our second result in which each variable had linear degree. This result leads to the expression of the Mahler measure in terms of several length 2 polylogarithms which are reduced to length one polylogarithms using appropriate identities. We present certain examples where these expressions can be written in terms of zeta values and values of Dirichlet \(L\)-functions of characters with conductors 4, 8 and 12.
6

Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques

Fiorilli, Daniel 08 1900 (has links)
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$. / The main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.
7

Sur la répartition des unités dans les corps quadratiques réels

Lacasse, Marc-André 12 1900 (has links)
Ce mémoire s'emploie à étudier les corps quadratiques réels ainsi qu'un élément particulier de tels corps quadratiques réels : l'unité fondamentale. Pour ce faire, le mémoire commence par présenter le plus clairement possible les connaissances sur différents sujets qui sont essentiels à la compréhension des calculs et des résultats de ma recherche. On introduit d'abord les corps quadratiques ainsi que l'anneau de ses entiers algébriques et on décrit ses unités. On parle ensuite des fractions continues puisqu'elles se retrouvent dans un algorithme de calcul de l'unité fondamentale. On traite ensuite des formes binaires quadratiques et de la formule du nombre de classes de Dirichlet, laquelle fait intervenir l'unité fondamentale en fonction d'autres variables. Une fois cette tâche accomplie, on présente nos calculs et nos résultats. Notre recherche concerne la répartition des unités fondamentales des corps quadratiques réels, la répartition des unités des corps quadratiques réels et les moments du logarithme de l'unité fondamentale. (Le logarithme de l'unité fondamentale est appelé le régulateur.) / This memoir aims to study real quadratic fields and a particular element of such real quadratic fields : the fundamental unit. To achieve this, the memoir begins by presenting as clearly as possible the state of knowledge on different subjects that are essential to understand the computations and results of my research. We first introduce quadratic fields and their rings of algebraic integers, and we describe their units. We then talk about continued fractions because they are present in an algorithm to compute the fundamental unit. Afterwards, we proceed with binary quadratic forms and Dirichlet's class number formula, which involves the fundamental unit as a function of other variables. Once the above tasks are done, we present our calculations and results. Our research concerns the distribution of fundamental units in real quadratic fields, the disbribution of units in real quadratic fields and the moments of the logarithm of the fundamental unit. (The logarithm of the fundamental unit is called the regulator.)
8

Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques

Fiorilli, Daniel 08 1900 (has links)
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$. / The main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.
9

Sur la répartition des unités dans les corps quadratiques réels

Lacasse, Marc-André 12 1900 (has links)
Ce mémoire s'emploie à étudier les corps quadratiques réels ainsi qu'un élément particulier de tels corps quadratiques réels : l'unité fondamentale. Pour ce faire, le mémoire commence par présenter le plus clairement possible les connaissances sur différents sujets qui sont essentiels à la compréhension des calculs et des résultats de ma recherche. On introduit d'abord les corps quadratiques ainsi que l'anneau de ses entiers algébriques et on décrit ses unités. On parle ensuite des fractions continues puisqu'elles se retrouvent dans un algorithme de calcul de l'unité fondamentale. On traite ensuite des formes binaires quadratiques et de la formule du nombre de classes de Dirichlet, laquelle fait intervenir l'unité fondamentale en fonction d'autres variables. Une fois cette tâche accomplie, on présente nos calculs et nos résultats. Notre recherche concerne la répartition des unités fondamentales des corps quadratiques réels, la répartition des unités des corps quadratiques réels et les moments du logarithme de l'unité fondamentale. (Le logarithme de l'unité fondamentale est appelé le régulateur.) / This memoir aims to study real quadratic fields and a particular element of such real quadratic fields : the fundamental unit. To achieve this, the memoir begins by presenting as clearly as possible the state of knowledge on different subjects that are essential to understand the computations and results of my research. We first introduce quadratic fields and their rings of algebraic integers, and we describe their units. We then talk about continued fractions because they are present in an algorithm to compute the fundamental unit. Afterwards, we proceed with binary quadratic forms and Dirichlet's class number formula, which involves the fundamental unit as a function of other variables. Once the above tasks are done, we present our calculations and results. Our research concerns the distribution of fundamental units in real quadratic fields, the disbribution of units in real quadratic fields and the moments of the logarithm of the fundamental unit. (The logarithm of the fundamental unit is called the regulator.)

Page generated in 0.0776 seconds