1 |
Classifying RGB Images with multi-colour Persistent HomologyByttner, Wolf January 2019 (has links)
In Image Classification, pictures of the same type of object can have very different pixel values. Traditional norm-based metrics therefore fail to identify objectsin the same category. Topology is a branch of mathematics that deals with homeomorphic spaces, by discarding length. With topology, we can discover patterns in the image that are invariant to rotation, translation and warping. Persistent Homology is a new approach in Applied Topology that studies the presence of continuous regions and holes in an image. It has been used successfully for image segmentation and classification [12]. However, current approaches in image classification require a grayscale image to generate the persistence modules. This means information encoded in colour channels is lost. This thesis investigates whether the information in the red, green and blue colour channels of an RGB image hold additional information that could help algorithms classify pictures. We apply two recent methods, one by Adams [2] and the other by Hofer [25], on the CUB-200-2011 birds dataset [40] andfind that Hofer’s method produces significant results. Additionally, a modified method based on Hofer that uses the RGB colour channels produces significantly better results than the baseline, with over 48 % of images correctly classified, compared to 44 % and with a more significant improvement at lower resolutions.This indicates that colour channels do provide significant new information and generating one persistence module per colour channel is a viable approach to RGB image classification.
|
2 |
From Relations to Simplicial Complexes: A Toolkit for the Topological Analysis of Networks / Från Binära Relationer till Simplistiska Komplex: Verktyg för en Topologisk Analys av NätverkLord, Johan January 2021 (has links)
We present a rigorous yet accessible introduction to structures on finite sets foundational for a formal study of complex networks. This includes a thorough treatment of binary relations, distance spaces, their properties and similarities. Correspondences between relations and graphs are given and a brief introduction to graph theory is followed by a more detailed study of cohesiveness and centrality. We show how graph degeneracy is equivalent to the concept of k-cores, which give a measure of the cohesiveness or interconnectedness of a subgraph. We then further extend this to d-cores of directed graphs. After a brief introduction to topology, focusing on topological spaces from distances, we present a historical discussion on the early developments of algebraic topology. This is followed by a more formal introduction to simplicial homology where we define the homology groups. In the context of algebraic topology, the d-cores of a digraph give rise to a partially ordered set of subgraphs, leading to a set of filtrations that is two-dimensional in nature. Directed clique complexes of digraphs are defined in order to encode the directionality of complete subdigraphs. Finally, we apply these methods to the neuronal network of C.elegans. Persistent homology with respect to directed core filtrations as well as robustness of homology to targeted edge percolations in different directed cores is analyzed. Much importance is placed on intuition and on unifying methods of such dispersed disciplines as sociology and network neuroscience, by rooting them in pure mathematics. / Vi presenterar en rigorös men lättillgänglig introduktion till de abstrakta strukturer på ändliga mängder som är grundläggande för en formell studie av komplexa nätverk. Detta inkluderar en grundlig redogörelse av binära relationer och distansrum, deras egenskaper samt likheter. Korrespondenser mellan olika typer av relationer och grafer förklaras och en kort introduktion till grafteori följs av en mer detaljerad studie av sammanhållning och centralitet. Vi visar hur begreppet 'degeneracy' är ekvivalent med begreppet k-kärnor (eng: k-cores), vilket ger ett mått på sammanhållningen hos en delgraf. Vi utökar sedan detta till konceptet d-kärnor (eng: d-cores) för riktade grafer. Efter en kort introduktion till topologi med fokus på topologiska rum från distansrum, så presenterar vi en historisk diskussion kring den tidiga utvecklingen av algebraisk topologi. Detta följs av en mer formell introduktion till homologi, där vi bl.a. definierar homologigrupperna. Vi definierar sedan så kallade riktade klick-komplex som simplistiska komplex (eng: simplicial complexes) från riktade grafer, där d-kärnorna av en riktad graf då ger upphov till filtrerade komplex i två parametrar. Persistent homologi med avseende på dessa riktade kärnfiltreringar såväl som robusthet mot kantpercolationer i olika kärnor analyseras sedan för det neurala nätverket hos C.Elegans. Stor vikt läggs vid intuition och förståelse, samt vid att förena metodiker för så spridda discipliner som sociologi och neurovetenskap.
|
Page generated in 0.0758 seconds