• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An algebraic construction of minimally-supported D-optimal designs for weighted polynomial regression

Jiang, Bo-jung 21 June 2004 (has links)
We propose an algebraic construction of $(d+1)$-point $D$-optimal designs for $d$th degree polynomial regression with weight function $omega(x)ge 0$ on the interval $[a,b]$. Suppose that $omega'(x)/omega(x)$ is a rational function and the information of whether the optimal support contains the boundary points $a$ and $b$ is available. Then the problem of constructing $(d+1)$-point $D$-optimal designs can be transformed into a differential equation problem leading us to a certain matrix including a finite number of auxiliary unknown constants, which can be solved from a system of polynomial equations in those constants. Moreover, the $(d+1)$-point $D$-optimal interior support points are the zeros of a certain polynomial which the coefficients can be computed from a linear system. In most cases the $(d+1)$-point $D$-optimal designs are also the approximate $D$-optimal designs.
2

D-optimal designs for weighted polynomial regression - a functional-algebraic approach

Chang, Sen-Fang 20 June 2004 (has links)
This paper is concerned with the problem of computing theapproximate D-optimal design for polynomial regression with weight function w(x)>0 on the design interval I=[m_0-a,m_0+a]. It is shown that if w'(x)/w(x) is a rational function on I and a is close to zero, then the problem of constructing D-optimal designs can be transformed into a differential equation problem leading us to a certain matrix including a finite number of auxiliary unknown constants, which can be approximated by a Taylor expansion. We provide a recursive algorithm to compute Taylor expansion of these constants. Moreover, the D-optimal interior support points are the zeros of a polynomial which has coefficients that can be computed from a linear system.
3

A characterization of weight function for construction of minimally-supported D-optimal designs for polynomial regression via differential equation

Chang, Hsiu-ching 13 July 2006 (has links)
In this paper we investigate (d + 1)-point D-optimal designs for d-th degree polynomial regression with weight function w(x) > 0 on the interval [a, b]. Suppose that w'(x)/w(x) is a rational function and the information of whether the optimal support contains the boundary points a and b is available. Then the problem of constructing (d + 1)-point D-optimal designs can be transformed into a differential equation problem leading us to a certain matrix with k auxiliary unknown constants. We characterize the weight functions corresponding to the cases when k= 0 and k= 1. Then, we can solve (d + 1)-point D-optimal designs directly from differential equation (k = 0) or via eigenvalue problems (k = 1). The numerical results show us an interesting relationship between optimal designs and ordered eigenvalues.

Page generated in 0.0864 seconds