• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An algebraic construction of minimally-supported D-optimal designs for weighted polynomial regression

Jiang, Bo-jung 21 June 2004 (has links)
We propose an algebraic construction of $(d+1)$-point $D$-optimal designs for $d$th degree polynomial regression with weight function $omega(x)ge 0$ on the interval $[a,b]$. Suppose that $omega'(x)/omega(x)$ is a rational function and the information of whether the optimal support contains the boundary points $a$ and $b$ is available. Then the problem of constructing $(d+1)$-point $D$-optimal designs can be transformed into a differential equation problem leading us to a certain matrix including a finite number of auxiliary unknown constants, which can be solved from a system of polynomial equations in those constants. Moreover, the $(d+1)$-point $D$-optimal interior support points are the zeros of a certain polynomial which the coefficients can be computed from a linear system. In most cases the $(d+1)$-point $D$-optimal designs are also the approximate $D$-optimal designs.
2

On minimally-supported D-optimal designs for polynomial regression with log-concave weight function

Lin, Hung-Ming 29 June 2005 (has links)
This paper studies minimally-supported D-optimal designs for polynomial regression model with logarithmically concave (log-concave) weight functions. Many commonly used weight functions in the design literature are log-concave. We show that the determinant of information matrix of minimally-supported design is a log-concave function of ordered support points and the D-optimal design is unique. Therefore, the numerically D-optimal designs can be determined e¡Óciently by standard constrained concave programming algorithms.
3

D-optimal designs for weighted polynomial regression - a functional-algebraic approach

Chang, Sen-Fang 20 June 2004 (has links)
This paper is concerned with the problem of computing theapproximate D-optimal design for polynomial regression with weight function w(x)>0 on the design interval I=[m_0-a,m_0+a]. It is shown that if w'(x)/w(x) is a rational function on I and a is close to zero, then the problem of constructing D-optimal designs can be transformed into a differential equation problem leading us to a certain matrix including a finite number of auxiliary unknown constants, which can be approximated by a Taylor expansion. We provide a recursive algorithm to compute Taylor expansion of these constants. Moreover, the D-optimal interior support points are the zeros of a polynomial which has coefficients that can be computed from a linear system.
4

A-optimal designs for weighted polynomial regression

Su, Yang-Chan 05 July 2005 (has links)
This paper is concerned with the problem of constructing A-optimal design for polynomial regression with analytic weight function on the interval [m-a,m+a]. It is shown that the structure of the optimal design depends on a and weight function only, as a close to 0. Moreover, if the weight function is an analytic function a, then a scaled version of optimal support points and weights is analytic functions of a at $a=0$. We make use of a Taylor expansion which coefficients can be determined recursively, for calculating the A-optimal designs.
5

Ds-optimal designs for weighted polynomial regression

Mao, Chiang-Yuan 21 June 2007 (has links)
This paper is devoted to studying the problem of constructing Ds-optimal design for d-th degree polynomial regression with analytic weight function on the interval [m-a,m+a],m,a in R. It is demonstrated that the structure of the optimal design depends on d, a and weight function only, as a close to 0. Moreover, the Taylor polynomials of the scaled versions of the optimal support points and weights can be computed via a recursive formula.
6

A characterization of weight function for construction of minimally-supported D-optimal designs for polynomial regression via differential equation

Chang, Hsiu-ching 13 July 2006 (has links)
In this paper we investigate (d + 1)-point D-optimal designs for d-th degree polynomial regression with weight function w(x) > 0 on the interval [a, b]. Suppose that w'(x)/w(x) is a rational function and the information of whether the optimal support contains the boundary points a and b is available. Then the problem of constructing (d + 1)-point D-optimal designs can be transformed into a differential equation problem leading us to a certain matrix with k auxiliary unknown constants. We characterize the weight functions corresponding to the cases when k= 0 and k= 1. Then, we can solve (d + 1)-point D-optimal designs directly from differential equation (k = 0) or via eigenvalue problems (k = 1). The numerical results show us an interesting relationship between optimal designs and ordered eigenvalues.

Page generated in 0.0993 seconds