• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lagrange-Chebyshev Based Single Step Methods for Solving Differential Equations

Stoffel, Joshua David 07 May 2012 (has links)
No description available.
2

Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics

Bani Younes, Ahmad H. 16 December 2013 (has links)
We propose novel methods to utilize orthogonal polynomial approximation in higher dimension spaces, which enable us to modify classical differential equation solvers to perform high precision, long-term orbit propagation. These methods have immediate application to efficient propagation of catalogs of Resident Space Objects (RSOs) and improved accounting for the uncertainty in the ephemeris of these objects. More fundamentally, the methodology promises to be of broad utility in solving initial and two point boundary value problems from a wide class of mathematical representations of problems arising in engineering, optimal control, physical sciences and applied mathematics. We unify and extend classical results from function approximation theory and consider their utility in astrodynamics. Least square approximation, using the classical Chebyshev polynomials as basis functions, is reviewed for discrete samples of the to-be-approximated function. We extend the orthogonal approximation ideas to n-dimensions in a novel way, through the use of array algebra and Kronecker operations. Approximation of test functions illustrates the resulting algorithms and provides insight into the errors of approximation, as well as the associated errors arising when the approximations are differentiated or integrated. Two sets of applications are considered that are challenges in astrodynamics. The first application addresses local approximation of high degree and order geopotential models, replacing the global spherical harmonic series by a family of locally precise orthogonal polynomial approximations for efficient computation. A method is introduced which adapts the approximation degree radially, compatible with the truth that the highest degree approximations (to ensure maximum acceleration error < 10^−9ms^−2, globally) are required near the Earths surface, whereas lower degree approximations are required as radius increases. We show that a four order of magnitude speedup is feasible, with both speed and storage efficiency op- timized using radial adaptation. The second class of problems addressed includes orbit propagation and solution of associated boundary value problems. The successive Chebyshev-Picard path approximation method is shown well-suited to solving these problems with over an order of magnitude speedup relative to known methods. Furthermore, the approach is parallel-structured so that it is suited for parallel implementation and further speedups. Used in conjunction with orthogonal Finite Element Model (FEM) gravity approximations, the Chebyshev-Picard path approximation enables truly revolutionary speedups in orbit propagation without accuracy loss.
3

Análise da estabilidade de sistemas dinâmicos periódicos usando Teoria de Sinha /

Mesquita, Amábile Jeovana Neiris. January 2007 (has links)
Orientador: Masayoshi Tsuchida / Banca: José Manoel Balthazar / Banca: Elso Drigo Filho / Resumo: Neste trabalho estuda-se alguns sistemas dinâmicos utilizando um novo método para aproximar a matriz de transição de estados (STM) para sistemas periódicos no tempo. Este método é baseado na transformação de Lyapunov-Floquet (L-F), e utiliza a expansão polinomial de Chebyshev para aproximar o termo periódico. O método iterativo de Picard é usado para aproximar a STM. Os multiplicadores de Floquet, determinados através deste método, permitem construir o diagrama de estabilidade do sistema dinâmico. Esta técnica é aplicada para analisar a estabilidade e os pontos de bifurcação do sistema dinâmico formado por um pêndulo elástico com excitação vertical periódica no suporte. Além dessa aplicação, é analisada também a equação de Mathieu e a estabilidade do sistema dinâmico constituído por partículas carregadas e imersas em um campo magnético perturbado. / Abstract: In this work some dynamic systems are studied using a new method to approach state transition matrix (STM) for time-periodic systems. This method is based on Lyapunov- Floquet transformation (transformation L-F) and uses the Chebyshev polynomial expansion to approach the periodical term. The Picard iterative method is used to approach the STM. The Floquet multipliers determined through this method, allow to draw the stability diagram of the dynamic system. This technique is applied to analyze the stability and bifurcation points of the dynamic system formed by an elastic pendulum with periodic vertical excitation on support. Besides this application, the Mathieu equation is analyzed and also the stability of the dynamical system constituted by charged particle in a perturbed magnetic field is discussed. / Mestre
4

Ds-optimal designs for weighted polynomial regression

Mao, Chiang-Yuan 21 June 2007 (has links)
This paper is devoted to studying the problem of constructing Ds-optimal design for d-th degree polynomial regression with analytic weight function on the interval [m-a,m+a],m,a in R. It is demonstrated that the structure of the optimal design depends on d, a and weight function only, as a close to 0. Moreover, the Taylor polynomials of the scaled versions of the optimal support points and weights can be computed via a recursive formula.
5

Análise da estabilidade de sistemas dinâmicos periódicos usando Teoria de Sinha

Mesquita, Amábile Jeovana Neiris [UNESP] 11 June 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-06-11Bitstream added on 2014-06-13T20:55:46Z : No. of bitstreams: 1 mesquita_ajn_me_sjrp.pdf: 655612 bytes, checksum: cb512103d01edb2f09f992e6cca22bdc (MD5) / Neste trabalho estuda-se alguns sistemas dinâmicos utilizando um novo método para aproximar a matriz de transição de estados (STM) para sistemas periódicos no tempo. Este método é baseado na transformação de Lyapunov-Floquet (L-F), e utiliza a expansão polinomial de Chebyshev para aproximar o termo periódico. O método iterativo de Picard é usado para aproximar a STM. Os multiplicadores de Floquet, determinados através deste método, permitem construir o diagrama de estabilidade do sistema dinâmico. Esta técnica é aplicada para analisar a estabilidade e os pontos de bifurcação do sistema dinâmico formado por um pêndulo elástico com excitação vertical periódica no suporte. Além dessa aplicação, é analisada também a equação de Mathieu e a estabilidade do sistema dinâmico constituído por partículas carregadas e imersas em um campo magnético perturbado. / In this work some dynamic systems are studied using a new method to approach state transition matrix (STM) for time-periodic systems. This method is based on Lyapunov- Floquet transformation (transformation L-F) and uses the Chebyshev polynomial expansion to approach the periodical term. The Picard iterative method is used to approach the STM. The Floquet multipliers determined through this method, allow to draw the stability diagram of the dynamic system. This technique is applied to analyze the stability and bifurcation points of the dynamic system formed by an elastic pendulum with periodic vertical excitation on support. Besides this application, the Mathieu equation is analyzed and also the stability of the dynamical system constituted by charged particle in a perturbed magnetic field is discussed.
6

An Arcsin Limit Theorem of Minimally-Supported D-Optimal Designs for Weighted Polynomial Regression

Lin, Yung-chia 23 June 2008 (has links)
Consider the minimally-supported D-optimal designs for dth degree polynomial regression with bounded and positive weight function on a compact interval. We show that the optimal design converges weakly to the arcsin distribution as d goes to infinity. Comparisons of the optimal design with the arcsin distribution and D-optimal arcsin support design by D-efficiencies are also given. We also show that if the design interval is [−1, 1], then the minimally-supported D-optimal design converges to the D-optimal arcsin support design with the specific weight function 1/¡Ô(£\-x^2), £\>1, as £\¡÷1+.
7

Acoustical wave propagator technique for structural dynamics

Peng, Shuzhi January 2005 (has links)
[Truncated abstract] This thesis presents three different methods to investigate flexural wave propagation and scattering, power flow and transmission efficiencies, and dynamic stress concentration and fatigue failures in structural dynamics. The first method is based on the acoustical wave propagator (AWP) technique, which is the main part described in this thesis. Through the numerical implementation of the AWP, the complete information of the vibrating structure can be obtained including displacement, velocity, acceleration, bending moments, strain and stresses. The AWP technique has been applied to systems consisting of a one-dimensional stepped beam, a two-dimensional thin plate, a thin plate with a sharp change of section, a heterogeneous plate with multiple cylindrical patches, and a Mindlin?s plate with a reinforced rib. For this Mindlin?s plate structure, through the comparison of the results obtained by Mindlin?s thick plate theory and Kirchhoff?s classical thin plate theory, the difference of theoretical predicted results is investigated. As part of these investigations, reflection and transmission coefficients, power flow and transmission efficiencies in a onedimensional stepped beam, and power flow in a two-dimensional circular plate structure, are studied. In particular, this technique has been successfully extended to investigate wave propagation and scattering, and dynamic stress concentration at discontinuities. Potential applications are fatigue failure prediction and damage detection in complex structures. The second method is based on experimental techniques to investigate the structural response under impact loads, which consist of the waveform measuring technique in the time domain by using the WAVEVIEW software, and steady-state measurements by using the Polytec Laser Scanning Vibrometer (PLSV) in the frequency domain. The waveform measuring technique is introduced to obtain the waveform at different locations in the time domain. These experimental results can be used to verify the validity of predicted results obtained by the AWP technique. Furthermore, distributions of dynamic strain and stress in both near-field (close to discontinuities) and far-field regions are investigated for the study of the effects of the discontinuities on reflection and transmission coefficients in a one-dimensional stepped beam structure. Experimental results in the time domain can be easily transferred into those in the frequency domain by the fast Fourier transformation, and compared with those obtained by other researchers. This PLSV technique provides an accurate and efficient tool to investigate mode shape and power flow in some coupled structures, such as a ribbed plate. Through the finite differencing technique, autospectral and spatial of dynamic strain can be obtained. The third method considered uses the travelling wave solution method to solve reflection and transmission coefficients in a one-dimensional stepped beam structure in the time domain. In particular, analytical exact solutions of reflection and transmission coefficients under the given initial-value problem are derived. These analytical solutions together with experimental results can be used to compare with those obtained by the AWP technique.
8

Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure / Réseaux de capteurs adaptatifs pour structures/machines intelligentes

Chochol, Catherine 01 October 2013 (has links)
La méthode d'identification développée dans cette thèse est inspirée des travaux de D. Rémond. On considérera les données d'entrée suivante : la réponse de la structure, qui sera mesurée de manière discrète, et qui dépendra des dimensions de la structure (temps, espace) le modèle de comportement, qui sera exprimé sous forme d'une équation différentielle ou d'une équation aux dérivées partielles, les conditions aux limites ainsi que la source d'excitation seront considérées comme non mesurées, ou inconnues. La procédure d'identification est composée de trois étapes : la projection sur une base polynomiale orthogonale (polynômes de Chebyshev) du signal mesuré, la différentiation du signal mesuré, l'estimation de paramètres, en transformant l'équation de comportement en une équation algébrique. La poutre de Bernoulli a permis d'établir un lien entre l'ordre de troncature de la base polynomiale et le nombre d'ondes contenu dans le signal projeté. Sur un signal bruité, nous avons pu établir une valeur de nombre d'onde et d'ordre de troncature minimum pour assurer une estimation précise du paramètre à identifier. Grâce à l'exemple de la poutre de Timoshenko, nous avons pu réadapter la procédure d'identification à l'estimation de plusieurs paramètres. Trois paramètres dont les valeurs ont des ordres radicalement différents ont été estimés. Cet exemple illustre également la stratégie de régularisation à adopter avec ce type de problèmes. L'estimation de l'amortissement sur une poutre a été réalisée avec succès, que ce soit à l'aide de sa réponse transitoire ou à l'aide du régime établi. Le cas bidimensionnel de la plaque a également été traité. Il a permis d'établir un lien similaire au cas de la poutre de Bernoulli entre le nombre d'onde et l'ordre de troncature. Deux cas d'applications expérimentales ont été traités au cours de cette thèse. Le premier se base sur le modèle de la poutre de Bernoulli, appliqué à la détection de défaut. En effet on applique un procédé d'identification ayant pour hypothèse initiale la continuité de la structure. Dans le cas où celle-ci ne le serait pas on s'attend à observer une valeur aberrante du paramètre reconstruit. Le procédé permet de localiser avec succès le lieu de la discontinuité. Le second cas applicatif vise à reconstruire l'amortissement d'une structure 2D : une plaque libre-libre. On compare les résultats obtenus à l'aide de notre procédé d'identification à ceux obtenus par Ablitzer à l'aide de la méthode RIFF. Les deux méthodes permettent d'obtenir des résultats sensiblement proches. / The purpose of this work is to adapt and improve the continuous time identification method proposed by D. Rémond for continuous structures. D. Rémond clearly separated this identification method into three steps: signal expansion, signal differentiation and parameter estimation. In this study, both expansion and differentiation steps are drastically improved. An original differentiation method is developed and adapted to partial differentiation. The existing identification process is firstly adapted to continuous structure. Then the expansion and differentiation principle are presented. For this identification purpose a novel differentiation model was proposed. The aim of this novel operator was to limit the sensitivity of the method to the tuning parameter (truncation number). The precision enhancement using this novel operator was highlighted through different examples. An interesting property of Chebyshev polynomials was also brought to the fore : the use of an exact discrete expansion with the polynomials Gauss points. The Gauss points permit an accurate identification using a restricted number of sensors, limiting de facto the signal acquisition duration. In order to reduce the noise sensitivity of the method, a regularization step was added. This regularization step, named the instrumental variable, was inspired from the automation domain. The instrumental variable works as a filter. The identified parameter is recursively filtered through the structure model. The final result is the optimal parameter estimation for a given model. Different numerical applications are depicted. A focus is made on different practical particularities, such as the use of the steady-state response, the identification of multiple parameters, etc. The first experimental application is a crack detection on a beam. The second experimental application is the identification of damping on a plate.

Page generated in 0.0469 seconds