• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuous time and space identification : An identification process based on Chebyshev polynomials expansion for monitoring on continuous structure / Réseaux de capteurs adaptatifs pour structures/machines intelligentes

Chochol, Catherine 01 October 2013 (has links)
La méthode d'identification développée dans cette thèse est inspirée des travaux de D. Rémond. On considérera les données d'entrée suivante : la réponse de la structure, qui sera mesurée de manière discrète, et qui dépendra des dimensions de la structure (temps, espace) le modèle de comportement, qui sera exprimé sous forme d'une équation différentielle ou d'une équation aux dérivées partielles, les conditions aux limites ainsi que la source d'excitation seront considérées comme non mesurées, ou inconnues. La procédure d'identification est composée de trois étapes : la projection sur une base polynomiale orthogonale (polynômes de Chebyshev) du signal mesuré, la différentiation du signal mesuré, l'estimation de paramètres, en transformant l'équation de comportement en une équation algébrique. La poutre de Bernoulli a permis d'établir un lien entre l'ordre de troncature de la base polynomiale et le nombre d'ondes contenu dans le signal projeté. Sur un signal bruité, nous avons pu établir une valeur de nombre d'onde et d'ordre de troncature minimum pour assurer une estimation précise du paramètre à identifier. Grâce à l'exemple de la poutre de Timoshenko, nous avons pu réadapter la procédure d'identification à l'estimation de plusieurs paramètres. Trois paramètres dont les valeurs ont des ordres radicalement différents ont été estimés. Cet exemple illustre également la stratégie de régularisation à adopter avec ce type de problèmes. L'estimation de l'amortissement sur une poutre a été réalisée avec succès, que ce soit à l'aide de sa réponse transitoire ou à l'aide du régime établi. Le cas bidimensionnel de la plaque a également été traité. Il a permis d'établir un lien similaire au cas de la poutre de Bernoulli entre le nombre d'onde et l'ordre de troncature. Deux cas d'applications expérimentales ont été traités au cours de cette thèse. Le premier se base sur le modèle de la poutre de Bernoulli, appliqué à la détection de défaut. En effet on applique un procédé d'identification ayant pour hypothèse initiale la continuité de la structure. Dans le cas où celle-ci ne le serait pas on s'attend à observer une valeur aberrante du paramètre reconstruit. Le procédé permet de localiser avec succès le lieu de la discontinuité. Le second cas applicatif vise à reconstruire l'amortissement d'une structure 2D : une plaque libre-libre. On compare les résultats obtenus à l'aide de notre procédé d'identification à ceux obtenus par Ablitzer à l'aide de la méthode RIFF. Les deux méthodes permettent d'obtenir des résultats sensiblement proches. / The purpose of this work is to adapt and improve the continuous time identification method proposed by D. Rémond for continuous structures. D. Rémond clearly separated this identification method into three steps: signal expansion, signal differentiation and parameter estimation. In this study, both expansion and differentiation steps are drastically improved. An original differentiation method is developed and adapted to partial differentiation. The existing identification process is firstly adapted to continuous structure. Then the expansion and differentiation principle are presented. For this identification purpose a novel differentiation model was proposed. The aim of this novel operator was to limit the sensitivity of the method to the tuning parameter (truncation number). The precision enhancement using this novel operator was highlighted through different examples. An interesting property of Chebyshev polynomials was also brought to the fore : the use of an exact discrete expansion with the polynomials Gauss points. The Gauss points permit an accurate identification using a restricted number of sensors, limiting de facto the signal acquisition duration. In order to reduce the noise sensitivity of the method, a regularization step was added. This regularization step, named the instrumental variable, was inspired from the automation domain. The instrumental variable works as a filter. The identified parameter is recursively filtered through the structure model. The final result is the optimal parameter estimation for a given model. Different numerical applications are depicted. A focus is made on different practical particularities, such as the use of the steady-state response, the identification of multiple parameters, etc. The first experimental application is a crack detection on a beam. The second experimental application is the identification of damping on a plate.
2

Approche multiéchelle en espace et en temps pour la prévision des endommagements dans les structures composites soumises à un impact de faible énergie / A multiscale space time approche to simulate damages in composite structures subjected to a low energy impact

Chantrait, Teddy 17 December 2014 (has links)
Les stratifiés composites sont de plus en plus utilisés dans les pièces de structures des aéronefs ce qui fait émerger de nouvelles problématiques comme celle des Impacts de Faible Energie (IFE). En effet, bien qu’ils possèdent des propriétés rapportées à leur masse très intéressantes ces matériaux peuvent être vulnérables aux petits chocs. Or, compte tenu des nombreux paramètres influents lors d’un tel impact (énergie, vitesse, stratification...), les essais actuellement majoritairement privilégiés à l’échelle industrielle sont long et coûteux. Ainsi, l’apport de la simulation numérique pourrait être d’une grande aide pour les constructeurs. La pratique du « virtual testing », en particulier, permettrait d’aller dans cette direction ce qui aurait pour effet de rationaliser les campagnes d’essais et les coûts financier qui en découlent. Cependant, elle peine à être mise en place ici car le temps CPU nécessaire pour la simulation fine des ndommagements induits par les IFE est trop important avec les méthodes actuelles. Partant de ce constat, ce travail a consisté à tirer avantageusement partie de la localisation spatiale et temporelle des délaminages, fissurations matricielles et ruptures de fibres qui peuvent apparaître pendant l’impact pour diminuer le coût de calcul. Ainsi une méthode multiéchelle en espace et en temps a été mise en place. Elle consiste à découper la structure impactée en deux zones. L’une est située autour du point d’impact, elle contient l’ensemble des non-régularités du problème (contact, loi adoucissante, modèle de zone cohésive). Elle est traitée avec le code de dynamique explicite Europlexus. L’autre correspond à la partie complémentaire. Le problème mécanique y est beaucoup plus régulier et il est traité avec le code de dynamique implicite Zset/Zébulon. Un couplage peu intrusif basé sur la méthode GC est donc réalisé entre ces deux codes. Il permet d’utiliser une modélisation adaptée dans chacune des deux régions ce qui permet en particulier d’utiliser des pas de temps différents. Un rapport supérieur à 1000 peut ainsi être obtenu entre celui du code explicite fixé par la condition de stabilité et celui utilisé dans la partie complémentaire. Un gain de temps CPU significatif confirmé par la simulation d’un impact réalisé sur un panneau composite raidi est ainsi obtenu. Il est également montré que la répartition implicite/explicite peut évoluer au cours du calcul. Pour cela un mécanisme de bascule a été mis en place. Il permet ainsi de faire transiter la résolution d’une partie de la structure initialement traitée dans le code Zebulon dans Europlexus. Un gain de temps supplémentaire est alors obtenu grâce à cette méthode sur le même cas d’application. / The composite laminates are increasingly used in aircraft structural parts which lead to new issues such as the Low Energy Impacts (LEI). Indeed, although they have well mechanical properties relative to their mass, small shocks may be very harmfull for laminates. Controlling such situations is essential for manufacturers that why lot of testing campaigns are currently performed. Yet, they are time consuming and expensive considering the many influential parameters (energy, speed, layup...). Numerical simulations of this phenomenon by practicing the so called “virtual testing” process could be really helpfull to rationalize testing campaigns in order to save money. Yet, this practice remain currently hard to do at the industrial scale due to the excessive CPU time required for fine simulation of damages induced by the LEI. Based on this observation, this work has consisted in taking advantage of the spatial and temporal location of delamination, matrix cracking and fiber breakage that can occur during impact in order to reduce the computational cost. Thus, a space and time multiscale method has been put in place. The impacted structure is split into two areas. One is located around the impacted point, it contains all the non-regularities of the problem (contact, softening law, cohesive zone model). This domain is treated with the explicit dynamics code Europlexus. The other one corresponds to the complementary part. The mechanical problem is much more regular and it is treated with the implicit dynamics code Zset / Zebulon. A low intrusive coupling based on the GC method is carried out between these two codes. It allows to use an adapted model in both regions different time step are in particular used. A time step ratio upper to 1000 can be reach between the one of the explicit code set by the stability condition and the one used in the complementary part. As a results, significant CPU time is saved. This is confirmed by the simulation of a stiffened composite panel impacted. It is also shown that the implicit / explicit allocation can change over the calculation. To do that, a switch mechanism has been established. It thus makes it possible to transit the resolution of a portion of the structure initially solved in the code Zebulon to Europlexus. As a results, further gain is obtained.
3

Simulation de fissures courbes en trois dimensions avec extraction directe des facteurs d'intensité des contraintes : En vue de l'identification de lois de propagation de fatigue / 3D curved crack simulation with direct generalized K-factors estimation : Toward fatigue crack growth law identification

Roux-Langlois, Clément 25 November 2014 (has links)
La compréhension du comportement de structures jusqu'à leur ruine est nécessaire pour concevoir au mieux ces structures. Selon le matériau et les sollicitations considérées, les mécanismes physiques à l'origine de la rupture changent. Nous nous intéresserons à des matériaux homogènes pour lesquels la ruine passe par le développement de fissures autour desquelles les non-linéarités de comportement n'ont pas un rôle dominant. Ces conditions sont réunies pour les matériaux fragiles pour lesquels la source principale de dissipation est la génération non réversible d'une surface libre, et pour certaines fissures de fatigue. Sur un cycle de chargement, il existe de nombreuses applications pour lesquelles les non-linéarités restent confinées. La théorie de la mécanique linéaire élastique de la rupture est alors un modèle pertinent pour approcher le comportement de la structure. Sous ces hypothèses, le front de la fissure introduit une singularité. L'étude asymptotique de cette singularité dans des situations plane et anti-plane permet de définir les séries de Williams. La singularité est alors d'ordre un demi et elle est quantifiée par les facteurs d'intensité des contraintes (FIC) pour chacun des trois modes de sollicitations. En 3D, la fissure peut avoir une géométrie complexe, et aucune expression générale de la singularité n'existe. Dans cette thèse, les séries de Williams en déplacements sont utilisées et régularisées le long du front au sens des éléments finis. À partir de cette définition 3D des séries asymptotiques en pointe de fissure, une méthode d'extraction directe des FIC (DEK-FEM) est étendue au cas 3D. Le domaine est décomposé en deux domaines, raccordés en moyenne sur l'interface. Au voisinage du front, les champs mécaniques sont approchés par une troncature des champs asymptotiques. La singularité est donc traitée avec des champs adaptés, et les degrés de liberté associés sont directement les coefficients asymptotiques. Parmi ces coefficients asymptotiques, on retrouve les FIC et les T-stresses. Pour des raisons d'efficacité numérique et pour pouvoir relier l'échelle de la structure à l'échelle de la fissure, cette méthode est intégrée dans un contexte multigrilles localisées X-FEM. Ainsi nous montrons que cette approche permet une bonne évaluation des évolutions des FIC et du T-stress. Cette méthode est développée en parallèle d'une stratégie de post-traitement expérimental (mesure de champs de déplacements par corrélation d'images) basée sur les mêmes séries asymptotiques. Les images tridimensionnels d'un essai de fatigue in situ sont obtenues par micro-tomographie à rayons X et reconstruction. La corrélation et la régularisation basées sur les séries asymptotiques permettent d'obtenir la géométrie de la fissure et les FIC pour pouvoir identifier des lois de propagation de fissures 3D en fatigue. L'efficacité de cette méthode en parallèle d'une simulation DEK-FEM est illustrée en 2D. / It is necessary to understand the behavior of structures up to their failure to enhance their design. The mechanisms and phenomena undergoing failure vary according to the considered material and boundary conditions. We consider homogeneous materials for which cracks propagate in a context where behavior nonlinearities are not dominants. These conditions are matched for brittle and quasi-brittle materials and for some fatigue cracks. For the former, the main source of dissipation is the crack propagation which can be seen as the generation of a new free-surface. For the later, there is many applications where, in one loading cycle, the nonlinearities remains confined around the crack tip. The linear elastic fracture mechanics theory is then a pertinent model to approximate the structure behavior. Under such hypotheses, a singularity appears in the crack tip vicinity. The Williams' series expansion is computed from the asymptotic study of plane and anti-plane states. The stress is singular at the crack tip and the order of this singularity is one out of two. The singularity amplitude is quantified by the stress intensity factors (SIF), one for each of the three loading modes. In 3D, the crack shape is potentially complex (front curvature and non-planar crack), and no general asymptotic series expansion exists. In this PhD thesis, the 2D Williams' series in displacements are used and regularized with a finite element evolution along the front. From this 3D definition of the asymptotic fields in the crack tip vicinity, a numerical method for direct estimation of the SIF (DEK-FEM) is extended to 3D. This method is based on domain decomposition, the two domains are bounded in a weak sense on their interface. In the crack tip vicinity, the mechanical fields are approximated by a truncation of the asymptotic series expansion. Therefore, appropriate fields are used to deal with the singularity, and the associated degrees of freedom are directly the asymptotic coefficients. Among these coefficients are the SIF and the T-stresses. To bridge the scales between the structure and the crack front singularity and to increase the numerical efficiency, this method is embedded in a localized X-FEM multigrids approach. The proposed method is shown to provide an accurate evaluation of the SIF and T-stresses evolution. This approach has been developed in combination of an experimental post-processing method (full field displacement measurement through image correlation) based on the same asymptotic series expansion. The 3D images can be obtained for in situ fatigue experiments by X-ray microtomography and reconstruction. The crack geometry and the SIF are then provided by image correlation and regularization based on Williams series expansion. These data can be used for identifying a 3D fatigue crack growth law. The efficiency of the method is illustrated in 2D.

Page generated in 0.0221 seconds