Spelling suggestions: "subject:"aprendizagem dde máquina"" "subject:"aprendizagem dee máquina""
1 |
Rede Neural artificial aplicado ao manejo de irrigação / Artificial neural network applied to irrigation managementRocha Neto, Odílio Coimbra da January 2012 (has links)
ROCHA NETO, Odílio Coimbra da. Rede Neural artificial aplicado ao manejo de irrigação. 2012. 109 f. Dissertação (Mestrado em engenharia agrícola)- Universidade Federal do Ceará, Fortaleza-CE, 2012. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-06-24T19:56:17Z
No. of bitstreams: 1
2012_dis_ocrochaneto.pdf: 14801715 bytes, checksum: 5e6bcfd60a98a12d43eaa5c1e659d6db (MD5) / Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-06-30T22:52:58Z (GMT) No. of bitstreams: 1
2012_dis_ocrochaneto.pdf: 14801715 bytes, checksum: 5e6bcfd60a98a12d43eaa5c1e659d6db (MD5) / Made available in DSpace on 2016-06-30T22:52:58Z (GMT). No. of bitstreams: 1
2012_dis_ocrochaneto.pdf: 14801715 bytes, checksum: 5e6bcfd60a98a12d43eaa5c1e659d6db (MD5)
Previous issue date: 2012 / Irrigation is an agricultural practice that leads to high crop production, however the success of this practice depends largely on correct computation of the timing of the application to avoid excessive or deficit application. Thus, the use of moisture sensors, such as capacitive sensors for determining soil moisture combined with artificial neural networks (ANNs) to calculate irrigation time can be a promising tool for automation of irrigation systems. The objective of this work was to develop an ANN that estimate the irrigation time and to contrast the results with the management based on a volume balance method on a watermelon field. Multilayer perceptron types of ANNs were tested. For ANNs training, data obtained in previous harvest were used. The watermelon field was located in Baixo Acaraú Irrigation District in Ceará State – Brazil, where soil moisture was determined using capacitive sensors developed at the Universidade Federal do Ceará (UFC). Networks were tested for two growing stages. The first stage spanning from 0 to the 30th day after seeding (DAS) and the second stage from the 31st to 60th DAS at harvesting. Networks were tested with 2 and 4 inputs, with 5, 10 and 20 neurons in the intermediate layer (NIL) and 1,000, 5,000 and 10,000 epochs. Upon training, the artificial neural networks were field-tested for validation by comparing their responses to the volumetric water balance method (VWBM) for the second stage an succeeding crop cycle. It was found that networks with four entries presented the largest mean square error, converging rapidly to values close to zero, compared the networks with two entries. For the NIL, it was not found significant difference in the mean square error between all 3 tested architectures, therefore it was not necessary to test networks larger than 5 NIL for this application. For the number of training epochs, the one with the best fit values were networks with 10,000 epochs for the first stage of the crop cycle, and 5,000 epochs for the second stage of the crop cycle. It was found no statistical difference in watermelon yield between the two irrigation timing strategies tested (ANN and VWBM). Therefore the artificial neural network was efficient in irrigation management in the field even though the network was presented to some values not occurring during the training process. Thus, one can conclude that the ANN for best performance was a 4-5-1 with learning rate 0.9, and 10000 and 5000 training epochs, respectively in the first and second crop stage. In addition, it was found that the network successfully scheduled the irrigation during the validation process. / A irrigação é uma das práticas culturais que mais influencia o aumento da produção. No entanto, para o sucesso desta prática necessita-se determinar o tempo certo da aplicação de água para evitar desperdícios. Com isso, o emprego de sensores de umidade, como os sensores capacitivos, para níveis reais de umidade do solo aliados a redes neurais artificiais (RNAs) que calculam tempo de irrigação, podem ser uma aquisição promissora para a automação de sistemas de irrigação. Desta forma, objetivou-se com o presente trabalho desenvolver uma RNA que estime o tempo de irrigação e comparando-o com o tempo estimado pelo método do balanço volumétrico para a cultura da melancia. Foram utilizadas RNAs do tipo perceptron de múltiplas camadas. Para o treinamento foram usados dados de manejos em área do PERÍMETRO IRRIGADO BAIXO ACARAÚ no estado do Ceará onde a umidade do solo é determinada por sensores capacitivos desenvolvidos pela Universidade Federal do Ceará (UFC). Foram testadas redes para as fases da cultura. A primeira fase determinada entre 0 e 30 dias após a semeadura (DAS) e a segunda fase sendo de 31 à 60 DAS. Foram testadas redes com 2 e 4 entradas; com 5, 10 e 20 neurônios na camada intermediária (NCI) e 1.000, 5.000 e 10.000 iterações. Após os treinamentos, as redes neurais artificiais foram testadas em campo para a sua validação, comparando as suas respostas em relação ao método do balanço hídrico volumétrico (BHV) para a segunda fase da cultura. Avaliando as redes com 2 e 4 entradas, observou-se que as redes de 4 entradas obtiveram menor erro quadrático médio, convergindo mais rapidamente para valores próximos a zero, quando comparadas às redes de 2 entradas. Quanto ao NCI, não houve mudanças entre as redes, dispensando a necessidade de programar redes maiores que 5 NCI para essa aplicação. Para o número de épocas de treinamento, a que obteve o melhor ajuste aos valores foram as redes com 10.000 iterações para a primeira fase da cultura e 5.000 iterações para a segunda fase da cultura. Com a etapa de campo pode-se constatar que não houve diferença estatística entre os dois manejos adotados. Assim, a rede neural artificial mostrou-se eficiente para o manejo da irrigação, mesmo tendo no experimento valores inéditos ao treinamento. Neste trabalho pode-se concluir que a RNA de melhores respostas para a primeira fase da cultura apresentou a MLP 4-5-1 com 10.000 épocas de treinamento e taxa de aprendizagem de 0,9 e para a segunda fase, MLP 4-5-1, com 10.000 épocas de treinamento e taxa de aprendizagem de 0,9. Conclui-se também, com a etapa de campo, que a rede foi bem sucedida em calcular o tempo de irrigação.
|
2 |
Estudo de estratégias para mudanças coletivas em modelos de opinião / Study of strategies for collective changes in opinion modelsMaizel, André Schraider 15 August 2014 (has links)
O estudo de sistemas sociais sempre foi visto como fora do escopo da física. No entanto, nos últimos anos, com o desenvolvimento da mecânica estatística e da aprendizagem de máquinas, em conjunto com recentes avanços na neurociência, tornou-se possível a criação de diversos modelos no intuito de estudar quantitativamente grandezas antes consideradas majoritariamente qualitativas. Dentre os problemas considerados está a moralidade, bem como suas consequências para as dinâmicas de opinião. Mais especificamente, considera-se relevante estudar como se dá a mudança de opiniões dentro de uma sociedade, bem como estratégias para convencer uma população a alterar sua direção moral. Utilizando um modelo baseado em agentes, na qual cada agente é representado por um vetor moral e utiliza uma estratégia de aprendizagem ótima para o cenário professor/aluno, estudamos a influência de duas estratégias de convencimento no comportamento macroscópico de nossa sociedade modelo. Tomando como base a aprendizagem sequencial sem a presença de ruído, e o fato de que seleção de exemplos na borda da dúvida gera um decaimento exponencial do erro de generalização em redes neurais artificiais, estudamos o efeito desta técnica como estratégia de convencimento populacional, assim como a comparação de sua eficácia com a estratégia padrão, na qual os exemplos são selecionados uniformemente. / The study of social systems was always seen as out of scope for the physical sciences. However, in the last years, with the rapid development of statistical mechanics and machine learning, along with recent advances in the field of neuroscience, it became possible to create a wide range of models with the objective to investigate quantitatively aspects of sociology that were mainly considered as qualitative features. Within the considered problems lies the issue of morality, as well as it\'s consequences to opinion dynamics. More specifically, it is considered relevant to understand how the opinion change dynamics undergoes inside a society, as well as strategies to convince a population to alter it\'s moral direction. Using an agent based model, in which each agent is represented by a moral vector and has an optimally performing algorithm in the professor/student scenario, we study the influence of two different convincement strategies on the macroscopic behaviour of our model society. In the online learning framework, without any noise, it is known that examples distributed perpendicular to the student achieve a exponential decay in it\'s generalization error. Therefore, we study the effect of this technique as a population convincement strategy, along with it\'s efficiency compared to the standard strategy, in which examples are selected uniformly.
|
3 |
Estudo de estratégias para mudanças coletivas em modelos de opinião / Study of strategies for collective changes in opinion modelsAndré Schraider Maizel 15 August 2014 (has links)
O estudo de sistemas sociais sempre foi visto como fora do escopo da física. No entanto, nos últimos anos, com o desenvolvimento da mecânica estatística e da aprendizagem de máquinas, em conjunto com recentes avanços na neurociência, tornou-se possível a criação de diversos modelos no intuito de estudar quantitativamente grandezas antes consideradas majoritariamente qualitativas. Dentre os problemas considerados está a moralidade, bem como suas consequências para as dinâmicas de opinião. Mais especificamente, considera-se relevante estudar como se dá a mudança de opiniões dentro de uma sociedade, bem como estratégias para convencer uma população a alterar sua direção moral. Utilizando um modelo baseado em agentes, na qual cada agente é representado por um vetor moral e utiliza uma estratégia de aprendizagem ótima para o cenário professor/aluno, estudamos a influência de duas estratégias de convencimento no comportamento macroscópico de nossa sociedade modelo. Tomando como base a aprendizagem sequencial sem a presença de ruído, e o fato de que seleção de exemplos na borda da dúvida gera um decaimento exponencial do erro de generalização em redes neurais artificiais, estudamos o efeito desta técnica como estratégia de convencimento populacional, assim como a comparação de sua eficácia com a estratégia padrão, na qual os exemplos são selecionados uniformemente. / The study of social systems was always seen as out of scope for the physical sciences. However, in the last years, with the rapid development of statistical mechanics and machine learning, along with recent advances in the field of neuroscience, it became possible to create a wide range of models with the objective to investigate quantitatively aspects of sociology that were mainly considered as qualitative features. Within the considered problems lies the issue of morality, as well as it\'s consequences to opinion dynamics. More specifically, it is considered relevant to understand how the opinion change dynamics undergoes inside a society, as well as strategies to convince a population to alter it\'s moral direction. Using an agent based model, in which each agent is represented by a moral vector and has an optimally performing algorithm in the professor/student scenario, we study the influence of two different convincement strategies on the macroscopic behaviour of our model society. In the online learning framework, without any noise, it is known that examples distributed perpendicular to the student achieve a exponential decay in it\'s generalization error. Therefore, we study the effect of this technique as a population convincement strategy, along with it\'s efficiency compared to the standard strategy, in which examples are selected uniformly.
|
4 |
Diagnóstico de anomalias em aplicações de acionamento de motores elétricos a partir de dados de processo de rede PROFINET e aprendizagem de máquinas / Diagnostics of anomalies in motion control applications based on process data of PROFINET networks and machine learning toolsDias, André Luís 06 June 2019 (has links)
Este trabalho propõe investigar, desenvolver e validar uma metodologia de projeto para sistemas de diagnóstico para detecção de falhas e anomalias em aplicações de acionamento de motores elétricos, comumente utilizados na indústria de manufatura. A metodologia proposta é baseada na coleta e interpretação de dados de processo de redes PROFINET, perfil PROFIdrive, e ferramentas de aprendizagem de máquinas. Técnicas de extração e redução de atributos são aplicadas nos dados de processo coletados. Estes atributos são utilizados em algoritmos para reconhecimento de padrões, os algoritmos investigados são o k-Nearest Neighbor, Redes Neurais Artificiais, Support Vector Machines, e adicionalmente uma adaptação da metodologia é feita utilizando um algoritmo para detecção de novidades. A avaliação da metodologia considerou quatro cenários para estudos de caso, para falhas comuns em aplicações de máquinas rotativas. Os resultados alcançados demonstram a eficácia da metodologia, que foi capaz de detectar as falhas e anomalias investigadas de maneira satisfatória, similares a trabalhos correlatos, com o diferencial de não exigirem sensores adicionais dedicados na coleta de dados. Desta maneira, o trabalho contribui para área de redes de comunicação industrial, mais especificamente o protocolo PROFINET, diagnósticos de anomalias em máquinas acionadas por motores elétricos, e ferramentas de aprendizagem de máquinas. / This work proposes to investigate, develop and validate a methodology to design diagnostic systems to detect faults and anomalies in motion control applications, commonly used in manufacturing industry. The proposed methodology is based on collection and interpretation of process data from PROFINET networks, PROFIdrive profile, and machine learning tools. Feature extraction and selection techniques are applied to the collected process data. These features are used in algorithms for pattern recognition problems. Investigated algorithms are k-Nearest Neighbor, Artificial Neural Networks, Support Vector Machines and in addition, an adaptation of the methodology is held for novelty detection. Four scenarios were considered as case of studies for methodology evaluation, based on common faults in rotating machine applications. The results proved the methodology effectiveness for diagnostic system design, which were able to detect satisfactorily the investigated faults and anomalies, similar to related work, with the differential of not requiring additional dedicated sensors for data collection. In this way, the work contributes to the area of industrial communication networks, more specifically in PROFINET protocol, diagnostic systems for fault detection in motion control applications, and machine learning tools.
|
5 |
Análise de sentimentos em reclamações: uma aplicação no maior site de reclamações do BrasilGonçalves, Cristiano de Andrade 22 July 2016 (has links)
Submitted by Cristiano de Andrade Gonçalves (cristianogoncalves@yahoo.com.br) on 2016-07-15T00:18:37Z
No. of bitstreams: 1
Dissertação Cristiano Gonçalves completa.pdf: 793794 bytes, checksum: 25b9c77cb59d14b9ecddf59b69643200 (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2016-07-20T12:51:19Z (GMT) No. of bitstreams: 1
Dissertação Cristiano Gonçalves completa.pdf: 793794 bytes, checksum: 25b9c77cb59d14b9ecddf59b69643200 (MD5) / Approved for entry into archive by Maria Almeida (maria.socorro@fgv.br) on 2016-07-25T13:27:52Z (GMT) No. of bitstreams: 1
Dissertação Cristiano Gonçalves completa.pdf: 793794 bytes, checksum: 25b9c77cb59d14b9ecddf59b69643200 (MD5) / Made available in DSpace on 2016-07-25T13:29:08Z (GMT). No. of bitstreams: 1
Dissertação Cristiano Gonçalves completa.pdf: 793794 bytes, checksum: 25b9c77cb59d14b9ecddf59b69643200 (MD5)
Previous issue date: 2016-07-22 / A análise de sentimentos é uma ferramenta com grande potencial, podendo ser aplicada em vários contextos. Esta dissertação tem com o objetivo analisar a viabilidade da aplicação da técnica numa base capturada do site de reclamações mais popular do Brasil, com a aplicação de técnicas de processamento de linguagem natural e de aprendizagem de máquinas é possível identificar padrões na satisfação ou insatisfação dos consumidores.
|
6 |
Uma abordagem para a escolha do melhor método de seleção de instâncias usando meta-aprendizagemMOURA, Shayane de Oliveira 21 August 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-04-05T14:16:18Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Shayane_FINAL.pdf: 7778172 bytes, checksum: bef887b2265bc2ffe53c75c2c275d796 (MD5) / Made available in DSpace on 2016-04-05T14:16:18Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Shayane_FINAL.pdf: 7778172 bytes, checksum: bef887b2265bc2ffe53c75c2c275d796 (MD5)
Previous issue date: 2015-08-21 / IF Sertão - PE / Os sistemas de Descoberta de Conhecimentos em Bases de Dados (mais conhecidos
como sistemas KDD) e métodos de Aprendizagem de Máquinas preveem situações,
agrupam e reconhecem padrões, entre outras tarefas que são demandas de um mundo
no qual a maioria dos serviços está sendo oferecido por meio virtual. Apesar dessas
aplicações se preocuparem em gerar informações de fácil interpretação, rápidas e
confiáveis, as extensas bases de dados utilizadas dificultam o alcance de precisão
unida a um baixo custo computacional. Para resolver esse problema, as bases de
dados podem ser reduzidas com o objetivo de diminuir o tempo de processamento e
facilitar o seu armazenamento, bem como, guardar apenas informações suficientes e
relevantes para a extração do conhecimento. Nesse contexto, Métodos de Seleção de
Instâncias (MSIs) têm sido propostos para reduzir e filtrar as bases de dados, selecionando
ou criando novas instâncias que melhor as descrevam. Todavia, aqui se aplica
o Teorema do No Free Lunch, ou seja, a performance dos MSIs varia conforme a base e
nenhum dos métodos sempre sobrepõe seu desempenho aos demais. Por isso, esta
dissertação propõe uma arquitetura para selecionar o “melhor” MSI para uma dada
base de dados (mais adequado emrelação à precisão), chamadaMeta-CISM (Metalearning
for Choosing Instance SelectionMethod). Estratégias de meta-aprendizagem
são utilizadas para treinar um meta-classificador que aprende sobre o relacionamento
entre a taxa de acerto de MSIs e a estrutura das bases. O Meta-CISM utiliza ainda
reamostragem e métodos de seleção de atributos para melhorar o desempenho do
meta-classificador. A proposta foi avaliada com os MSIs: C-pruner, DROP3, IB3, ICF e
ENN-CNN. Os métodos de reamostragem utilizados foram: Bagging e Combination
(método proposto neste trabalho). Foram utilizados como métodos de seleção de
atributos: Relief-F, CFS, Chi Square Feature Evaluation e Consistency-Based Subset
Evaluation. Cinco classificadores contribuíram para rotular as meta-instâncias: C4.5,
PART, MLP-BP, SMO e KNN. Uma MLP-BP treinou o meta-classificador. Os experimentos
foram realizados com dezesseis bases de dados públicas. O método proposto
(Meta-CISM) foi melhor que todos os MSIs estudados, na maioria dos experimentos
realizados. Visto que eficientemente seleciona um dos três melhores MSIs em mais de
85% dos casos, a abordagemé adequada para ser automaticamente utilizada na fase
de pré-processamento das base de dados. / The systems for Knowledge Discovery in Databases (better known as KDD systems)
andMachine Learning methods predict situations, recognize and group (cluster) patterns,
among other tasks that are demands of a world in which the most of the services
is being offered by virtual ways. Although these applications are concerned in generate
fast, reliable and easy to interpret information, extensive databases used for such
applications make difficult achieving accuracy with a low computational cost. To solve
this problem, the databases can be reduced aiming to decrease the processing time
and facilitating its storage, as well as, to save only sufficient and relevant information
for the knowledge extraction. In this context, Instances SelectionMethods (ISMs) have
been proposed to reduce and filter databases, selecting or creating new instances that
best describe them. Nevertheless, No Free Lunch Theorem is applied, that is, the ISMs
performance varies according to the base and none of the methods always overcomes
their performance over others. Therefore, this work proposes an architecture to
select the "best"ISM for a given database (best suited in relation to accuracy), called
Meta-CISM (Meta-learning for Choosing Instance SelectionMethod). Meta-learning
strategies are used to train a meta-classifier that learns about the relationship between
the accuracy rate of ISMs and the bases structures. TheMeta-CISM still uses resampling
and feature selection methods to improve the meta-classifier performance. The
proposal was evaluated with the ISMs: C-pruner, DROP3, IB3, ICF and ENN-CNN.
Resampling methods used were: Bagging and Combination (method proposed in this
work). The Feature SelectionMethods used were: Relief-F, CFS, Chi Square Feature
Evaluation e Consistency-Based Subset Evaluation. Five classifiers contributed to label
the meta-instances: C4.5, PART, MLP-BP, SMO e KNN. The meta-classifier was trained
by a MLP-BP. Experiments were carried with sixteen public databases. The proposed
method (Meta-CISM) was better than all ISMs studied in the most of the experiments
performed. Since that efficiently selects one of the three best ISMs in more than 85%
of cases, the approach is suitable to be automatically used in the pre-processing of the
databases.
|
7 |
Modelos computacionais e probabilísticos em riscos de créditoBarboza, Flavio Luiz de Moraes 06 February 2015 (has links)
Made available in DSpace on 2016-03-15T19:31:11Z (GMT). No. of bitstreams: 1
Flavio Luiz de Moares Barboza_ Portuguesprot.pdf: 2812858 bytes, checksum: f2dcc3e0b9d4f798fd0a10c4a4b79844 (MD5)
Previous issue date: 2015-02-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This dissertation studies credit risk to promove a discussion about the breadth of scientific
literature and two highlighted topics: regulatory capital and bankruptcy prediction modelling.
These issues are divided among three essays. The first one is a review of literature
in nature. The main studies on credit risk were classified and coded, and a citation-based
approach was used to determine its relevance and contributions. Interesting omissions of
knowledge are found in this work, which give us motivation to develop two subjects. The
second essay discusses the influence of the desirefor higher rating positions for financial
instituitons strategies when aiming to minimize economic capital, considering the borrower s
credit rating and target rating itself. Using a probabilistic distribution model to
simulate loss-given default (LGD), our results show that the use of credit ratings in the
guidance for calculating minimum capital requirements can be an alternative to the banks.
Yet, we find it possible to get better rankings to lend to some small intervals of LGD. The
third study shows a comparative analysis in the performance of computational models,
which are widely used to solve classification problems, and traditional methods applied to
predict failures one year before the event. The models are formulated by machine learning
techniques (support vector machines, bagging, boosting and random forest). Applying
data from U.S. companies from 1985 to 2013, we compare the results of these innovative
methods with neural networks, logistic regression, and discriminant analysis. The major
result of this part of the study is a substantial improvement in predictive power by using
machine learning techniques, when, besides the original variable Z-Score from Altman
(1968), six metrics (or constructs) selected from Carton e Hofer (2006) are included as
explanatory variables. The analysis shows that the bagging and the random forest models
outperform other techniques; all predictions are improved when the suggested constructs
are included in the survey. / Esta tese estuda risco de crédito com o intuito de promover uma discussão sobre a amplitude
da literatura científica e dois destacados temas: capital regulatório e modelagem
de previsão de falências. Para tanto divididiu-se o material em três ensaios. O primeiro
é, na sua essência, uma revisão de literatura. Os principais estudos sobre risco de crédito
foram classificados e codificados, e uma abordagem baseada em citação foi utilizada
para determinar a sua relevância e contribuições. Lacunas interessantes do conhecimento
são encontradas neste trabalho, o que nos dá motivação para desenvolver dois assuntos.
O segundo discute a influência da busca por posições de rating mais elevadas para as
estratégias das instituições financeiras quando visam minimizar o capital econômico, considerando
rating de crédito do tomador e de seu rating objetivo em si. Usando um modelo
de distribuição probabilística para simular a perda dada a inadimplência (mais conhecida
por loss given default, LGD), os resultados encontrados mostram que o uso de notações
de crédito nas orientações para o cálculo dos requisitos mínimos de capital pode ser uma
alternativa para os bancos. No entanto, achou-se possível obter uma melhor classificação
dentro de alguns pequenos intervalos de LGD. O terceiro mostra uma análise comparativa
do desempenho de modelos computacionais, que são amplamente utilizados para resolver
problemas de classificação e métodos tradicionais aplicados para prever falhas um ano
antes do evento. Os modelos são formulados por meio de técnicas de aprendizagem de
máquinas (máquinas de vetores de suporte, bagging, boosting e random forest). Aplicando
dados de empresas norte-americanas 1985-2013, comparamos os resultados destes métodos
inovadores com redes neurais, regressão logística e análise discriminante. O principal
resultado desta parte do estudo é uma melhoria substancial no poder de previsão usando
técnicas de aprendizado de máquina, quando, além das variáveis do Z-Score original de
Altman (1968), seis métricas (ou constructos) selecionadas a partir de Carton e Hofer
(2006) são incluídas como variáveis explicativas. A análise mostra que os modelos bagging
e random forest tem desempenho superior as outras técnicas; todas as previsões são
melhoradas quando os constructos sugeridos são incluídos na pesquisa.
|
8 |
Diagnóstico de falhas em motores de indução trifásicos baseado em decomposição em componentes ortogonais e aprendizagem de máquinas / Fault diagnosis in three-phase induction motors based on orthogonal component decomposition and machine learningLiboni, Luisa Helena Bartocci 05 June 2017 (has links)
O objetivo principal desta tese consiste no desenvolvimento de ferramentas matemáticas e computacionais dedicadas a um sistema de diagnóstico de barras quebradas no rotor de Motores de Indução Trifásicos. O sistema proposto é baseado em um método matemático de decomposição de sinais elétricos, denominado de Decomposição em Componentes Ortogonais, e ferramentas de aprendizagem de máquinas. Como uma das principais contribuições desta pesquisa, realizou-se um aprofundamento do entendimento da técnica de Decomposição em Componentes Ortogonais e de sua aplicabilidade como ferramenta de processamento de sinais para sistemas elétricos e eletromecânicos. Redes Neurais Artificiais e Support Vector Machines, tanto para classificação multi-classes quanto para detecção de novidades, foram configurados para receber índices advindos do processamento de sinais elétricos de motores, e a partir deles, identificar os padrões normais e os padrões com falhas. Além disso, a severidade da falha também é diagnosticada, a qual é representada pelo número de barras quebradas no rotor. Para a avaliação da metodologia, considerou-se o acionamento de motores de indução pela tensão de alimentação da rede e por inversores de frequência, operando sob diversas condições de torque de carga. Os resultados alcançados demonstram a eficácia das ferramentas matemáticas e computacionais desenvolvidas para o sistema de diagnóstico, sendo que os índices criados se mostraram altamente correlacionados com o fenômeno da falha. Mais especificamente, foi possível criar índices monotônicos com a severidade da falha e com baixa variabilidade, demonstrando-se que as ferramentas são eficientes extratores de características. / This doctoral thesis consists of the development of mathematical and computational tools dedicated to a diagnostic system for broken rotor bars in Three Phase Induction Motors. The proposed system is based on a mathematical method for decomposing electrical signals, named the Orthogonal Components Decomposition, and machine learning tools. As one of the main contributions of this research, an in-depth investigation of the decomposition technique and its applicability as a signal processing tool for electrical and electromechanical systems was carried-out. Artificial Neural Networks and Support Vector Machines for multi-class classification and novelty detection were configured to receive indices derived from the processing of electrical signals and then identify normal motors and faulty motors. In addition, the fault severity is also diagnosed, which is represented by the number of broken rotor bars. Experimental data was tested in order to evaluate the proposed method. Signals were obtained from induction motors operating with different torque levels and driven either directly by the grid or by frequency inverters. The results demonstrate the effectiveness of the mathematical and computational tools developed for the diagnostic system since the indices created are highly correlated with the fault phenomenon. More specifically, it was possible to create monotonic indices with the fault severity and with low variability, what supports that the solution is an efficient fault-specific feature extractor.
|
9 |
Diagnóstico de falhas em motores de indução trifásicos baseado em decomposição em componentes ortogonais e aprendizagem de máquinas / Fault diagnosis in three-phase induction motors based on orthogonal component decomposition and machine learningLuisa Helena Bartocci Liboni 05 June 2017 (has links)
O objetivo principal desta tese consiste no desenvolvimento de ferramentas matemáticas e computacionais dedicadas a um sistema de diagnóstico de barras quebradas no rotor de Motores de Indução Trifásicos. O sistema proposto é baseado em um método matemático de decomposição de sinais elétricos, denominado de Decomposição em Componentes Ortogonais, e ferramentas de aprendizagem de máquinas. Como uma das principais contribuições desta pesquisa, realizou-se um aprofundamento do entendimento da técnica de Decomposição em Componentes Ortogonais e de sua aplicabilidade como ferramenta de processamento de sinais para sistemas elétricos e eletromecânicos. Redes Neurais Artificiais e Support Vector Machines, tanto para classificação multi-classes quanto para detecção de novidades, foram configurados para receber índices advindos do processamento de sinais elétricos de motores, e a partir deles, identificar os padrões normais e os padrões com falhas. Além disso, a severidade da falha também é diagnosticada, a qual é representada pelo número de barras quebradas no rotor. Para a avaliação da metodologia, considerou-se o acionamento de motores de indução pela tensão de alimentação da rede e por inversores de frequência, operando sob diversas condições de torque de carga. Os resultados alcançados demonstram a eficácia das ferramentas matemáticas e computacionais desenvolvidas para o sistema de diagnóstico, sendo que os índices criados se mostraram altamente correlacionados com o fenômeno da falha. Mais especificamente, foi possível criar índices monotônicos com a severidade da falha e com baixa variabilidade, demonstrando-se que as ferramentas são eficientes extratores de características. / This doctoral thesis consists of the development of mathematical and computational tools dedicated to a diagnostic system for broken rotor bars in Three Phase Induction Motors. The proposed system is based on a mathematical method for decomposing electrical signals, named the Orthogonal Components Decomposition, and machine learning tools. As one of the main contributions of this research, an in-depth investigation of the decomposition technique and its applicability as a signal processing tool for electrical and electromechanical systems was carried-out. Artificial Neural Networks and Support Vector Machines for multi-class classification and novelty detection were configured to receive indices derived from the processing of electrical signals and then identify normal motors and faulty motors. In addition, the fault severity is also diagnosed, which is represented by the number of broken rotor bars. Experimental data was tested in order to evaluate the proposed method. Signals were obtained from induction motors operating with different torque levels and driven either directly by the grid or by frequency inverters. The results demonstrate the effectiveness of the mathematical and computational tools developed for the diagnostic system since the indices created are highly correlated with the fault phenomenon. More specifically, it was possible to create monotonic indices with the fault severity and with low variability, what supports that the solution is an efficient fault-specific feature extractor.
|
Page generated in 0.094 seconds