• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 46
  • 31
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 333
  • 193
  • 81
  • 59
  • 59
  • 48
  • 41
  • 35
  • 29
  • 25
  • 25
  • 23
  • 23
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Controls on and uses of hydrochemical and isotopic heterogeneity in the plateau aquifer system, contiguous aquifers, and associated surface water, Edwards Plateau region, Texas

Nance, Hardie Seay, 1948- 25 January 2012 (has links)
Groundwater and surface water in the Edwards Plateau region exhibits spatial variability arising from mineral differences in aquifers and mixing of groundwaters with diverse flow paths and ages. Integration of basic hydrochemical and isotope data (⁸⁷Sr/⁸⁶Sr, [delta]¹⁸O, [delta]D, ¹⁴C, ³H) document that groundwaters in the Lower Cretaceous Edwards-Trinity (Plateau) aquifer system reflect intermixing of modern and Pleistocene recharge. Pleistocene recharge occurred under cooler paleo-climatic conditions, based on [delta]¹⁸O variance of 4.59%, and flow traversed sub-cropping Permian evaporite and Triassic strata under hydraulic conditions that promoted upward flow into the Plateau system. Recharge areas may have been in topographically elevated areas in New Mexico that no longer are connected with the Plateau. Present distribution of groundwaters with higher SO₄/Cl values occurring beneath topographic divides on the Plateau suggests that modern recharge occurs preferentially in losing-stream networks and is inhibited on divides by low-permeability soils. Relationships between ¹⁴C, tritium, [delta]¹³C, and Mg/Ca values confirm that effectively younger groundwaters occur beneath the upper parts of drainage networks, but down slope of divides. Thus, groundwater-age and hydrochemical data suggest that recharge preferentially occurs in the upper parts of drainage networks. Correlations between groundwater relative age and Mg/Ca enable estimation of the proportion of modern recharge at specific well locations based on Mg/Ca values and enables estimating local absolute recharge rates from regional-scale recharge estimates obtained from regional flow models. The Upper Colorado River bounds the northern and northeastern margin of the Plateau system and shows systematic chemical evolution along its flow path, including decreasing salinity and increasing SO₄/Cl values. The stream can be conceptually divided into three segments that each reflect groundwater inputs from five hydrochemically distinct intervals: 1) deep Permian and Pennsylvanian reservoirs similar to those that produce hydrocarbons in the region; 2) Upper Permian halite (Salado Formation); 3) the Triassic siliciclastic aquifer (Dockum Group); 4) the sulfate-evaporite-bearing Permian system (Ochoan, Guadalupian, and Leonardian Series); and 5) the Plateau aquifer system. Conservative mixing models suggest that any aquifer that the river is traversing at a specific location contributes a distinct hydrochemical signature, but the dominant contribution is from the Plateau system. / text
182

SUBSURFACE HEAT FLOW AS A MEANS FOR DETERMINING AQUIFER CHARACTERISTICS IN THE TUCSON BASIN, PIMA COUNTY, ARIZONA

Supkow, Donald James. January 1971 (has links)
No description available.
183

Advances in Modeling, Sampling, and Assessing the Anthropogenic Contamination Potential of Fractured Bedrock Aquifers

Kozuskanich, John C 01 March 2011 (has links)
Groundwater is an important resource that is relied on by approximately half of the world’s population for drinking water supply. Source water protection efforts rely on an understanding of flow and contaminant transport processes in aquifers. Bedrock aquifers are considered to be particularly vulnerable to contamination if the overburden cover is thin or inadequate. The objective of this study is to further the understanding of modeling, sampling, and the potential for anthropogenic contamination in fractured bedrock aquifers. Two numerical modeling studies were conducted to examine geochemical groundwater sampling using multi-level piezometers and the role of discretization in a discrete fracture radial transport scenario. Additionally, two field investigations were performed to study the variability of bacterial counts in pumped groundwater samples and the potential for anthropogenic contamination in a bedrock aquifer having variable overburden cover in a semi-urban setting. Results from the numerical modeling showed that choosing sand pack and screen materials similar in hydraulic conductivity to each other and the fractures intersecting the borehole can significantly reduce the required purge volume. Spatiotemporal discretization was found to be a crucial component of the numerical modeling of solute transport and verification of the solution domain using an analytical or semi-analytical solution is needed. Results from the field investigations showed fecal indicator bacterial concentrations typically decrease on the order of one to two orders of magnitude from the onset of pumping. A multi-sample approach that includes collection at early-time during the purging is recommended when sampling fecal indicator bacteria for the purpose of assessing drinking water quality. Surface contaminants in areas with thin or inadequate overburden cover can migrate quickly and deeply into the bedrock aquifer via complex fracture networks that act as preferential pathways. While the presence of fecal indicator bacteria in groundwater samples signifies a possible health risk through human consumption, it was the suite of pharmaceuticals and personal care products that allowed the identification of septic systems and agriculture as the dominant sources of contamination. Land-use planning and source water protection initiatives need to recognize the sensitivity of fractured bedrock aquifers to contamination. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2011-02-28 17:27:54.806
184

Development of local sampling and monitoring protocol for radioactive elements in fractured rock Acquifers in South Africa using a case study in Beaufort West

Gaathier Mahed January 2009 (has links)
<p>The aim of this study was to test whether one could use the same methods as used for sampling heavy metals and apply them to radioactive elements. Furthermore a sampling protocol was developed, the first of its kind, for the sampling of radioactive elements in fractured rock aquifers. This was achieved by initially examining local as well as international manuals and methods. The aforementioned was done in conjunction with a literature review of the movement of radioactive elements in these fractured rock aquifers. Beaufort West was utilised as a study area and the geology, hydrogeology and topography was outlined. Background radioactivity was generally acceptable except for two samples which were anomalously high. Taking cognisance of the methods used, as well as those previously applied in the area and abroad, a sampling protocol for radioactive elements in fractured rock aquifers was developed and attached as an appendix. In conclusion it was suggested that multiple methods be tested on one well in order to check whether similar results would occur. This would thus determine the best applicable methods. Also it was proposed that a new method, called DGT sampling, be applied in order to gain a time weighted average of the heavy metals and radioactive elements in groundwater. It could also be clearly seen, by comparing historical data and the current data, that the methods used for sampling heavy metal can be applied to radioactivity.</p>
185

Aquifer storage and recovery in saline aquifers

Chen, Yiming 27 August 2014 (has links)
Aquifer storage and recovery (ASR) is a particular scheme of artificial recharge of groundwater by injecting fresh water into aquifers and subsequently recovering the stored water during times of peak demand or extended drought. In the era of combating climate change, ASR, as an effective means for water reuse and sustainable management of water resources in concert with the natural environment, represents a huge opportunity for climate change adaptation to mitigate water availability stress.The success of an ASR scheme is quantified by the recovery efficiency (RE), defined as the volume of stored water that can be recovered for supply purposes divided by the total volume injected. It is not uncommon that RE may be significantly lower than 100% because of the water quality changes as a consequence of the mixing between the injected water and native groundwater and the interaction between injected water and soil. Thus, the key of a successful ASR scheme is (1) to select appropriate aquifers and (2) to design optimal operational processes to build up a bubble of injected water with minimized negative impact from such mixing and interaction. To achieve this, this thesis develops an integrated knowledge base with sound interdisciplinary science and understanding of the mixing processes under operational ASR management in aquifers with various hydrogeological conditions. Analytical and numerical modeling are conducted to improve the scientific understanding of mixing processes involved in ASR schemes and to provide specific technical guidance for improving ASR efficiency under complex hydrogeological conditions. (1) An efficient approach is developed to analytically evaluate solute transport in a horizontal radial flow field with a multistep pumping and examine the ASR performance in homogeneous, isotropic aquifer with advective and dispersive transport processes. (2) Numerical and analytical studies are conducted to investigate the efficiency of an ASR system in dual-domain aquifers with mass transfer limitations under various hydrogeological and operational conditions. Simple and effective relationships between transport parameters and ASR operational parameters are derived to quantify the effectiveness and ascertain the potential of ASR systems with mass transfer limitations.(3) Effects of hydrogeological and operational parameters on ASR efficiency are assessed in homogeneous/stratified, isotropic/anisotropic coastal aquifers. Effects of transverse dispersion are particularly investigated in such aquifers.(4) Finally, we test and study an innovative ASR scheme for improving the RE in brackish aquifers: injection through a fully-penetrated well and recovery through a partially-penetrated well.
186

Towards understanding the groundwater dependent ecosystems within the Table Mountain Group Aquifer: a conceptual approach.

Sigonyela, Vuyolwethu January 2006 (has links)
<p>Understanding of Groundwater Dependent Ecosystems (GDEs) and their extent within the Table Mountain Group (TMG) aquifer is poor. To understand the dependence to basic ecological and hydrogeological concepts need explanation. The use of current literature aided in identification and classification. From the literature it has come clear that groundwater dependence centers around two issues, water source and water use determination. The use of Geographical Information System (GIS) showed its potential in proof of water sources. Rainfall data and a Digital Elevation Model (DEM) for the Uniondale area have been used to do watershed delineation, which is in line with locating GDEs on a landscape. Thus the conceptual approach should be a broad one that sets a basis for both investigation (scientific research) and institutional arrangements (management).</p>
187

A preliminary understanding of deep groundwater flow in the Table Mountain group (TMG) aquifer system.

Netili, Khangweleni Fortress January 2007 (has links)
<p>The Table Mountain Group (TMG) Aquifer is the second largest aquifer system in South Africa, after dolomites. This aquifer has the potential to be a signinficant source of water for the people of the Western Cape. The occurrence of hot water springs in the TMG in relation with the main geological fault systems in SOuth Africa shows that deep flow systmes do exist. Little is known about these deep aquifer systems in South Africa (i.e. flow mechanisms). To close the above-mentioned knowledge gap, this study was initiated. The current study gave a review of some of the aspects that needs to be considered when distinguishing deep groundwater from shallow groundwater.</p>
188

Hydraulic properties of the vadose zone at two typical sites in the Western Cape for the assessment of groundwater vulnerability to pollution.

Samuels, Donovan. January 2007 (has links)
<p>Aquifer vulnerability assessment is increasingly becoming a very significant basis in order to fulfill the water demands in South Africa. Knowledge of soil hydraulic properties that consists of the soil water retention and hydraulic conductivity functions is a prerequisite for predicting solution transport in soils. The overall objective of the study was to develop a database of hydraulic properties for collected undisturbed samples and to test selected models by making use of this database.</p>
189

Delineating the source, geochemical sinks and aqueous mobilisation processes of naturally occurring arsenic in a coastal sandy aquifer

O???Shea, Bethany Megan, School of Biological, Earth & Environmental Science, UNSW January 2006 (has links)
Elevated arsenic concentrations have been reported in a drinking water and irrigation-supply aquifer of Stuarts Point, New South Wales, Australia. Arsenic occurrence in such aquifers is potentially a major issue due to their common use for high yield domestic and irrigation water supplies. Ten multi-level piezometers were installed to depths of approximately 30 m in the sand and clay aquifer. Sediment samples were collected at specific depths during drilling and analysed for chemical and mineralogical composition, grain size characteristics, potential for arsenic release from solid phase and detailed microscopic features. From this data, a full geomorphic reconstruction allowed the determination of source provenance for the aquifer sediments. The model proposed herein provides evidence that the bulk of the aquifer was deposited under intermittent fluvial and estuarine conditions; and that all sediments derive from the regional arsenicmineralised hinterland. More than 200 groundwater samples were collected and analysed for over 50 variables. The heterogeneity of the aquifer sediments causes redox stratification to occur, which in turn governs arsenic mobility in the groundwater. The bulk of the aquifer is composed of fluvial sand deposits undergoing reductive dissolution of iron oxides. Arsenic adsorbed to iron oxide minerals is released during dissolution but re-adsorbs to other iron oxides present in this part of the aquifer. The deeper, more reducing fluvial sand and estuarine clay groundwaters have undergone complete reductive dissolution of iron oxides resulting in the subsequent mobilisation of arsenic into groundwater. Some of this arsenic has been incorporated into iron sulfide mineral precipitates, forming current arsenian pyrite sinks within the aquifer. The extraction of groundwater from the aquifer for irrigation and drinking water supply induces seawater intrusion of arsenic-rich estuarine water, bringing further dissolved arsenic into the aquifer. A greater understanding of the source, sinks and mobilisation of arsenic in this aquifer contributes to our broad understanding of arsenic in the environment; and allows aquifer specific management procedures and research recommendations to be made. Any coastal or unconsolidated aquifer that has sediments derived from mineralised provenances should consider monitoring for arsenic, and other potentially toxic trace elements, in their groundwater systems.
190

Delineating the source, geochemical sinks and aqueous mobilisation processes of naturally occurring arsenic in a coastal sandy aquifer

O???Shea, Bethany Megan, School of Biological, Earth & Environmental Science, UNSW January 2006 (has links)
Elevated arsenic concentrations have been reported in a drinking water and irrigation-supply aquifer of Stuarts Point, New South Wales, Australia. Arsenic occurrence in such aquifers is potentially a major issue due to their common use for high yield domestic and irrigation water supplies. Ten multi-level piezometers were installed to depths of approximately 30 m in the sand and clay aquifer. Sediment samples were collected at specific depths during drilling and analysed for chemical and mineralogical composition, grain size characteristics, potential for arsenic release from solid phase and detailed microscopic features. From this data, a full geomorphic reconstruction allowed the determination of source provenance for the aquifer sediments. The model proposed herein provides evidence that the bulk of the aquifer was deposited under intermittent fluvial and estuarine conditions; and that all sediments derive from the regional arsenicmineralised hinterland. More than 200 groundwater samples were collected and analysed for over 50 variables. The heterogeneity of the aquifer sediments causes redox stratification to occur, which in turn governs arsenic mobility in the groundwater. The bulk of the aquifer is composed of fluvial sand deposits undergoing reductive dissolution of iron oxides. Arsenic adsorbed to iron oxide minerals is released during dissolution but re-adsorbs to other iron oxides present in this part of the aquifer. The deeper, more reducing fluvial sand and estuarine clay groundwaters have undergone complete reductive dissolution of iron oxides resulting in the subsequent mobilisation of arsenic into groundwater. Some of this arsenic has been incorporated into iron sulfide mineral precipitates, forming current arsenian pyrite sinks within the aquifer. The extraction of groundwater from the aquifer for irrigation and drinking water supply induces seawater intrusion of arsenic-rich estuarine water, bringing further dissolved arsenic into the aquifer. A greater understanding of the source, sinks and mobilisation of arsenic in this aquifer contributes to our broad understanding of arsenic in the environment; and allows aquifer specific management procedures and research recommendations to be made. Any coastal or unconsolidated aquifer that has sediments derived from mineralised provenances should consider monitoring for arsenic, and other potentially toxic trace elements, in their groundwater systems.

Page generated in 0.0554 seconds