• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a pre-knitting friction test method and study of friction and bending of yarns with high stiffness.

Peterson, Joel, Vegborn, Ellinor January 2009 (has links)
Knitting is a class of techniques for production of textile fabrics by inter-looping yarns withthe use of hooked needles. The new loops are created when the yarns drawn through thepreviously formed loops. An apparatus for two needles with adjustable geometry resemblingthe knitting process in weft knitting machines has been constructed and mounted in anordinary tensile testing machine in order to study stress build-up, fibre damage, needle wearetc. The merits of the knittability test-rig set-up are the possibilities to test the performance ofthe yarns with the geometry of the machine and to simulate and identify some of the problemsthat can occur between needles and yarn in the knitting process. Well-defined mechanicalconditions with the static pre-load weight and the possibilities to identify the location of theevents of damage on the fibres during the testing of the specimens and to do furtherexamination before knitting are some obvious merits. The knittability of some extreme yarns,PET-monofilaments, carbon fibre roving and aramid yarn has been studied with respect tofriction and bending stiffness. Friction and bending characteristics exhibit viscoellasticfeatures. The needles have diameters of the same order of magnitude as the diameters ofmonofilaments for example for use in knitted spacer fabrics and the results of this workillustrate strong influence of the fibre diameter on the knittability. / <p>Program: Magisterutbildning i textilteknologi</p><p>Uppsatsnivå: D</p>
2

Advancing Knowledge of Mechanically-Fiber Reinforced Asphalt Concrete

January 2020 (has links)
abstract: The use of reinforcing fibers in asphalt concrete (AC) has been documented in many studies. Published studies generally demonstrate positive benefits from using mechanically fiber reinforced asphalt concrete (M-FRAC); however, improvements generally vary with respect to the particular study. The widespread acceptance of fibers use in the asphalt industry is hindered by these inconsistencies. This study seeks to fulfill a critical knowledge gap by advancing knowledge of M-FRAC in order to better understand, interpret, and predict the behavior of these materials. The specific objectives of this dissertation are to; (a) evaluate the state of aramid fiber in AC and examine their impacts on the mechanical performance of asphalt mixtures; (b) evaluate the interaction of the reinforcement efficiency of fibers with compositions of asphalt mixtures; (c) evaluate tensile and fracture properties of M-FRAC; (d) evaluate the interfacial shear bond strength and critical fiber length in M-FRAC; and (e) propose micromechanical models for prediction of the tensile strength of M-FRAC. The research approach to achieve these objectives included experimental measurements and theoretical considerations. Throughout the study, the mechanical response of specimens with and without fibers are scrutinized using standard test methods including flow number (AASHTO T 378) and uniaxial fatigue (AASHTO TP 107), and non-standard test methods for fiber extraction, direct tension, semi-circular bending, and single fiber pull-out tests. Then, the fiber reinforcement mechanism is further examined by using the basic theories of viscoelasticity as well as micromechanical models. The findings of this study suggest that fibers do serve as a reinforcement element in AC; however, their reinforcing effectiveness depends on the state of fibers in the mix, temperature/ loading rate, properties of fiber (i.e. dosage, length), properties of mix type (gradation and binder content), and mechanical test type to characterize M-FRAC. The outcome of every single aforementioned elements identifies key reasons attributed to the fiber reinforcement efficiency in AC, which provides insights to justify the discrepancies in the literature and further recommends solutions to overcome the knowledge gaps. This improved insight will translate into the better deployment of existing fiber-based technologies; the development of new, and more effective fiber-based technologies in asphalt mixtures. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020

Page generated in 0.0518 seconds