• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical and experimental considerations of selective vulnerability In Parkinson's disease

Burke, Samuel 11 1900 (has links)
Les maladies neurodégénératives sont typiquement caractérisées en fonction de leurs symptômes et des observations pathologiques effectuées après le décès. Les symptômes spécifiques à la maladie sont également normalement associés aux dysfonctionnements et à la dégénérescence de certaines sous- populations spécifiques de neurones dans le système nerveux. La maladie de Parkinson (MP) est une maladie neurodégénérative principalement caractérisée par des symptômes moteurs dus à la dégénérescence spécifique des neurones dopaminergiques (DA) de la substantia nigra pars compacta (SNpc/SNc). Il semble cependant que les neurones DA de la SNc ne soient pas la seule population de neurones qui dégénère dans la MP. L'analyse post-mortem, l'imagerie in vivo et les symptômes cliniques démontrent que le dysfonctionnement et la dégénérescence se produisent dans plusieurs autres régions du système nerveux, incluant par exemple des neurones noradrénergiques (NA) du locus coeruleus (LC), des neurones sérotoninergiques des noyaux du raphé et des neurones cholinergiques du noyau moteur dorsal du nerf vague (DMV) et du noyau pédonculopontin. Comme d'autres maladies neurodégénératives, la MP est causée par plusieurs facteurs, tant génétiques qu'environnementaux. De nombreuses observations suggèrent que ces facteurs soient associés au dysfonctionnement de plusieurs systèmes ou fonctions cellulaires incluant la production d’énergie par la mitochondrie, l’élimination de protéines dysfonctionnelles par le protéasome et le lysosome, la régulation de l’équilibre entre la production d'espèces oxydatives réactives et les mécanismes antioxydants, la régulation des niveaux de calcium intracellulaire et l’inflammation. Il semble donc que le dysfonctionnement de ces facteurs converge pour provoquer la dégénérescence neuronale dans le contexte du vieillissement. Ce qui rend les neurones de certaines régions du système nerveux intrinsèquement plus vulnérables aux facteurs associés à la MP est une question fondamentale qui n’est pas résolue pour le moment. Les travaux de cette thèse sont basés sur l’hypothèse proposant que cette vulnérabilité sélective découle de propriétés communes retrouvées chez les neurones vulnérables. En particulier, les neurones vulnérables auraient en commun d’être des neurones de projections dotés d’un axone complexe qui projette sur de longues distances, formant un nombre très élevé de terminaisons axonales sur de vastes territoires du système nerveux. De plus, ces neurones présenteraient des propriétés physiologiques distinctives, incluant notamment une décharge autonome (pacemaker). Ensemble, ces caractéristiques pourraient contribuer à placer ces neurones dans des conditions de fonctionnement aux limites de leur capacités bioénergétiques et homéostatiques, rendant difficile toute adaptation aux dysfonctionnements cellulaires associés au vieillissement et causés par les facteurs de risques de la MP. Dans cette thèse, je présenterai une revue systématique de la littérature sur la perte de neurones dans le cerveau des personnes atteintes de la maladie de Parkinson, montrant que l'identité neurochimique précise des neurones qui dégénèrent dans la maladie de Parkinson, et l'ordre temporel dans lequel cela se produit, n’est pas clair. Cependant, en analysant les points de vue présentés dans les publications citant cette revue, nous avons remarqué que la majorité de ceux-ci ne reflètent pas le message central de notre publication. Puisque l’identification de l’identité des neurones vulnérables et non vulnérables à la MP est fondamentale pour le développement de théories et hypothèses sur les causes de la MP, nous suivons cette première publication avec une lettre réaffirmant l'importance de faire face aux problèmes identifiés dans notre revue. Nous présentons ensuite des données in vitro montrant que les neurones vulnérables à la MP, comparés à ceux qui sont moins vulnérables, ont une capacité intrinsèque à développer des champs axonaux plus importants et plus complexes, avec un nombre plus élevé de sites actifs de libération de neurotransmetteurs. De plus, nous constatons que ces observations sont corrélées à une vulnérabilité plus élevée face à un stress oxydatif pertinent pour la MP. Ces données sont en accord avec l'hypothèse selon laquelle le domaine axonal, et en particulier le nombre de sites de libération de neurotransmetteurs par neurone, est un facteur important qui contribue à rendre un neurone sélectivement vulnérable dans le contexte de la MP. Enfin, nous présentons une méthode d’analyse d’image open-source visant à aider les biologistes et les neuroscientifiques à automatiser la quantification du nombre de neurones dans des cultures primaires de neurones, telle qu’utilisée dans les travaux de cette thèse. Nous proposons que cet algorithme simple — mais robuste — permettra aux biologistes d'automatiser le comptage des neurones avec une grande précision, quelque chose de difficile à effectuer avec les autres approches open-source disponibles présentement. Nous espérons que les travaux présentés dans cette thèse permettront de contribuer à raffiner les théories visant à expliquer l’origine de la MP et à terme, de développer de nouvelles approches thérapeutiques. / Neurodegenerative diseases are typically characterized based on their symptoms, and pathological factors identified after death. The disease-specific symptoms are due to the dysfunction and degeneration of specific subpopulations of neurons, which cause dysfunction in particular brain functions. Parkinson's disease (PD) is a neurodegenerative disease primarily characterized by motor symptoms due to the specific degeneration of dopamine (DA) neurons of the substantia nigra pars compacta (SNpc/SNc): a population of neurons essential for motor control. SNc DA neurons are, however, not the only population of neurons that degenerate in PD. Post-mortem analysis, in vivo imaging, and clinical symptoms demonstrate that dysfunction and degeneration occur in several other neuronal nuclei. These include, but are not limited to, noradrenergic (NA) locus coeruleus (LC) neurons, serotonin neurons of the raphe nuclei, and cholinergic neurons of the dorsal motor nucleus of the vagus (DMV) and pedunculopontine nucleus. Like other neurodegenerative diseases, PD is linked to several risk factors, both genetic and environmental. The evidence suggests that these risk factors are associated with the dysfunction in systems of cellular bioenergetics (including mitochondrial function); proteostatic homeostasis; endolysosomal function; an imbalance between the production of reactive oxidative species (ROS), and antioxidant mechanisms; calcium homeostasis; alpha-synuclein misfolding; and neuroinflammation. Consequently, together with aging, these risk factors converge on causing the selective degeneration of "PD-vulnerable" nuclei. What makes these neurons intrinsically vulnerable to PD-associated risk factors is a fundamental question — and understanding these neurons will reveal biological mechanisms that we can target to protect these cells from degeneration. Our best hypotheses to explain why these neurons are based on the observations that most PD- vulnerable neurons are long-range projection neuromodulatory neurons sharing common characteristics: projecting to voluminous territories, having very long and highly branched unmyelinated axonal domains with vast numbers of neurotransmitter release sites, and exhibiting a unique physiology such as pacemaker firing. Taken together, this suggests that these neurons function at the tail-end of their bioenergetic and homeostatic capacity, unable to tolerate any further demands, such as those incurred in the presence of risk factors associated with PD. In this thesis, I will present a systematic review on the literature on purported cell loss in PD brains, showing that — given the actual primary evidence — the precise neurochemical identity of neurons that degenerate in PD, and the temporal order of this degeneration, is far less clear than described by most publications. This review — at the time of writing — has gone on to be highly cited. However, analyzing the claims made in publications citing this review, we discover that the majority of claims do not reflect the core message of our publication. Since the identity of PD-vulnerable and non-PD-vulnerable neurons is fundamental to theory and hypotheses when trying to understand PD, we follow this first publication with a letter restating the importance to address our observations. We then present in vitro data showing that classically PD-vulnerable neurons, when compared to non-PD vulnerable neurons, have an intrinsic capacity to develop larger and more complex axonal domains, with higher numbers of active neurotransmitter release sites. Moreover, we find that these observations correlate to elevated vulnerability to PD-relevant stress assays. These data provide additional support for the hypothesis that the axonal domain — and in particular — the number of active neurotransmitter sites per neuron, is a cell-autonomous factor rendering a neuron selectively vulnerable in the context of PD. Finally, we present an open-source tool to support biologists and neuroscientists in automating the quantification of neuron numbers in medium-throughput primary cell cultures. Where the application of other open-source solutions is either too simplistic for the use-case or technically challenging to implement, this simple — yet robust algorithm — allows biologists with limited computational nous to automate neuron counting with high precision. We hope that the work presented in this thesis will contribute to the refinement of theories aimed at explaining the origin of PD and, ultimately, to the development of new therapeutic approaches.
2

Développement d'un modèle murin de la maladie de Parkinson par augmentation compensatoire de l'arborisation axonale dopaminergique-nigrostriée

Tanguay, William 12 1900 (has links)
Les neurones dopaminergiques de la substance noire (SNc) sont les plus vulnérables à la dégénérescence dans la maladie de Parkinson et ses modèles animaux. Suite à des travaux antérieurs et à des résultats préliminaires du laboratoire Trudeau, notre hypothèse actuelle suggère que la très grande taille de l'arborisation axonale des neurones de la SNc soit un facteur clé à l'origine de leur vulnérabilité, puisque cet état devrait être associé à un taux élevé de phosphorylation oxydative et de production de radicaux libres. En accord avec cette hypothèse, les autres populations dopaminergiques, dotées d'arborisations de moindre taille, résistent mieux aux lésions expérimentales et à la maladie chez l'humain. L'objectif du présent projet était de développer un modèle murin dans lequel les neurones de la SNc présentent une taille d'arborisation axonale plus grande, se rapprochant davantage de celle observée chez l'humain et en reproduisant la vulnérabilité, ce qui pourrait représenter une percée importante dans l'identification de nouvelles approches thérapeutiques. Basée sur le bourgeonnement axonal compensatoire des neurones dopaminergiques suite à des lésions partielles, la méthode utilisée fut l'injection unilatérale intranigrale de la toxine 6-hydroxydopamine (6-OHDA) à quelques jours de vie (P5), en visant l'élimination de 50% des neurones de la SNc. Un immunomarquage contre la tyrosine hydroxylase (TH), enzyme de synthèse de la dopamine, ainsi qu'une quantification du signal TH dans le striatum et des comptes neuronaux stéréologiques ont permis de quantifier la lésion partielle et de mettre en évidence la présence d'une croissance axonale compensatoire des neurones dopaminergiques survivants, à 10 et 90 jours post-lésion, suggérant une compensation précoce. Afin de mettre en évidence l'origine du bourgeonnement axonal, nous avons injecté un vecteur viral de type AAV encodant une protéine fluorescente (EYFP) dans la SNc ou la VTA des animaux adultes. Nos résultats confirment la présence de neurones nigrostriés à plus grande arborisation suivant une lésion unilatérale précoce à la 6-OHDA, dont la vulnérabilité accrue pourra être évaluée dans des expériences à venir par des protocoles lésionnels au MPTP, une toxine permettant de modéliser la maladie de Parkinson chez la souris. / Dopaminergic neurons of the substantia nigra (SNc) are amongst the most vulnerable to neurodegeneration in Parkinson's disease and its animal models. According to previous work and preliminary results in our laboratory, our present hypothesis postulates that the large axonal arborisation size of SNc neurons is a key driving factor in their vulnerability, since this characteristic is associated with increased oxidative phosphorylation levels and free radicals production. In agreement with this hypothesis, other dopaminergic populations with smaller axonal arbors better resist to experimental lesions and to the disease process in humans. The current project aims to develop a mouse model in which SNc neurons present an axonal arborisation of increased size, closer to what is encountered in humans, thus reproducing their vulnerability, which could represent an important breakthrough in the identification of new therapeutic approaches. Based on compensatory axonal sprouting of dopaminergic neurons following partial lesions, the method used was the unilateral intranigral injection of the toxin 6-hydroxydopamine (6-OHDA) at an early age (P5), to induce the loss of approximately 50% of SNc neurons. Immunostaining against tyrosine hydroxylase (TH), an enzyme required for the synthesis of dopamine, TH signal quantification in the striatum and stereological counting of neurons allowed for the quantification of the partial lesion and demonstrated compensatory axonal sprouting at 10 and 90 days post-lesion, with our results suggesting an early compensation. To better characterize the origin of axonal sprouting, we injected an AAV viral vector encoding a fluorescent protein (EYFP) in either the SNc or the VTA of adult animals. Our results confirm the presence of nigrostriatal neurons with increased arborisation sizes following early unilateral lesion using 6-OHDA, whose increased vulnerability will be evaluated in future experiments through lesion protocols using MPTP, a toxin used to model Parkinson's disease in mice.

Page generated in 0.1315 seconds