• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geology of the Monowai Rift Zone and Louisville Segment of the Tonga-Kermadec Arc: Regional Controls on Arc Magmatism and Hydrothermal Activity

Gray, Alexandra 27 April 2022 (has links)
The Tonga-Kermadec arc in the SW Pacific comprises a chain of more than 90 volcanic complexes. A continuous 400-km long chain of volcanic activity along the central portion of the Tonga arc has become the focus of intensive research, extending previous studies that have focused on the southern Kermadec chain. Earlier interpretations of the Tonga arc have focused on a perceived lack of volcanism between ~21°S and ~27°S, adjacent to a bend in the trench caused by the collision of the subducting Louisville Seamount Chain (LSC). During swath mapping in 2002, it was revealed that this portion of the arc, including the Louisville and Monowai segments, is in fact one of the most volcanically active parts of the Tonga-Kermadec system. At this location, a combination of oblique convergence of the Pacific Plate and southward compression due to the collision of the LSC has resulted in left-lateral strike-slip faulting and rifting of the arc crust. This has produced a series of left-stepping arc transverse graben and horst structures that localize the voluminous volcanic activity. For this study, a new 1:250,000 scale geological map of the Louisville and Monowai segments has been constructed as a framework for a quantitative analysis of arc volcanism and the eruptive history of these segments. Two types of volcanoes dominate the arc front: deep caldera systems (collapse structures formed due to the evacuation of magma) within the arc rifts, and smaller volcanic cones between the rifts. The cone volcanoes tend to have small summit craters (<10 km3) whereas the large caldera volcanoes have major depressions of up to 50 km3. The cones are relatively undeformed, whereas the larger calderas are affected by multiple stages of collapse, asymmetric subsidence, and distortion caused by regional stresses. Surveys of the crater walls of the cone volcanoes show a predominance of volcaniclastic deposits, whereas the caldera volcanoes contain a high proportion of coherent lava flows. The caldera volcanoes also show a prevalence of basaltic melts compared to the more andesitic and dacitic cones. The largest caldera volcano is the Monowai volcanic complex (25°53’S) occupying a deep depression (Monowai Rift Graben) that crosses the arc front. The volcanic complex consists of a large caldera (12 km wide, 1600 m deep) and an adjacent stratovolcano (Monowai Cone) rising nearly to sea level. We suggest that the different types of volcanoes along the Louisville and Monowai segments reflect the influence of deep structures within the arc crust that have localized strikeslip and normal faulting.
2

Intrabasinal Sediments and Tectonostratigraphy of the N.E. Lau Basin: Contributions to Extensional Models of Back-Arc Basins

Kehew, Jessie 10 November 2023 (has links)
Sediment deposited in back-arc basins preserves a record of the extensional, volcanic and tectonic history of the arc-backarc systems. Back-arc sedimentation is of particular interest as seafloor massive sulfide deposits may be preserved in back-arc basin sediments. The study of back-arc sedimentation using acoustic data, such as high-resolution sub-bottom profiling data (Parasound) and seismic reflection data, can be a much more cost effective approach than analysis of sediments recovered from drill cores. In this study, we use these two acoustic datasets to build a facies model of sedimentation in the northeast Lau Basin, an actively opening back-arc basin in the southwest Pacific Ocean. Using 830 km of Parasound and 730 km of seismic lines along 4 transects of the Lau Basin, we constructed one of the most detailed models of sedimentation in a back-arc basin to date. Parasound data show distinct echoes with sub-bottom reflections indicative of a high proportion of hemipelagic sediment, whereas the indistinct echoes with few to no sub-bottom reflections indicate a higher proportion of coarse, bedded, volcaniclastic turbidites. Hyperbolic echoes are associated with regions of rugged or uneven terrain characterized by exposed, rough basement or deposits formed by contour currents, turbidity currents, slumps or slides. These relationships form the basis of an echo-facies legend developed for typical back-arc basin sediments. The echo-facies observed in the Parasound, and confirmed by deeper-penetrating seismic reflection data, provide important insights into the sedimentary processes involved in back-arc sedimentation. We observed mass transport deposits (MTDs) in all of the sub-basins and slope deposits within and on the flanks of active rifts (e.g., the Fonualei Rift and Spreading Centre, FRSC), suggesting a direct correlation between MTDs and zones of active rifting. We observed an overall increase in sediment thickness toward the Tofua Arc which suggests it is the main sediment source, but local variations in sediment thickness suggest significant input from local intrabasinal seamounts. The uppermost echo-facies in over 60% of the sub-basins in the study area is dominated by hemipelagic material, which suggests an abrupt transition in the dominant sediment source from volcaniclastic to hemipelagic at around 0.3 Ma, when a period of volcanic quiescence from the Tofua Arc began. The study shows that a near complete record of basin evolution can be constructed using geophysical and acoustic methods and that this work may help to locate future drill sites where in situ data can be collected.
3

The geochemical evolution of the Aucanquilcha Volcanic Cluster : prolonged magmatism and its crustal consequences

Walker, Barry Alan 20 July 2011 (has links)
The interaction of magma with continental crust at convergent margins is fundamental to understanding if and how continents grow. Isotopic and elemental data constrain the progressive stages of development of the magmatic underpinnings of the long-lived Aucanquilcha Volcanic Cluster (AVC), situated atop the thick continental crust of the central Andes in northern Chile. Whole rock data are used in conjunction with mineral compositions to infer processes that gave rise to eleven million years of intermediate, dominantly dacite, arc volcanism. A pulse of volcanic activity at the AVC between ~5 and 2 Ma is bracketed by more sluggish rates. We document chemical changes in the lavas that accompany this eruptive evolution. Trace element data suggest that crystal fractionation and magma mixing were the dominant mechanisms generating the diversity observed in the AVC whole rock data. Fractionation was dominant during early and waning stages of magmatism, and magma mixing was an important process during the high flux period. Peak thermal maturity of the AVC underpinnings coincided with the high magma flux and likely promoted open system processes during this time. Mineral compositions from zircon, amphibole, pyroxene, and Fe-Ti oxides confirm the importance of material recycling in the production of evolved AVC rocks. Various geothermometers were employed to calculate the pre-eruptive conditions of AVC magma using mineral compositions. Pressure estimates from amphibole and two-pyroxene barometry indicate crystallization depths of 1 ��� 5 kb and 4 ��� 6 kb, respectively. Temperature estimates from zircon, Fe-Ti oxides, amphiboles, and pyroxenes indicate temperatures ranging from ~700��C to 1100��C. Zircon temperatures are always the lowest (700��C - 950��C), and pyroxene temperatures are always the highest (1000��C - 1100��C), with Fe-Ti oxide and amphiboles temperatures falling in between. U-Pb ages from zircons and thermometry from individual samples evidence the thermal maturation and consolidation of the underpinnings below the AVC, presumably culminating in a large, crystal-rich mush zone where magmas were trapped and processed. It is in these middle to upper crustal zones where magmatic diversity is attenuated and giant, relatively homogeneous batholiths are formed. Isotopes of AVC lavas are similar to values observed from other central Andes volcanic centers. Lead isotopes are consistent with the AVC's location within a Pb isotope transition zone between the Antofalla and Arequipa basement terranes. Oxygen and Sr isotopic ratios are high and Nd isotopic ratios low with respect to a depleted mantle. Through time, ������Sr/������Sr values of AVC lavas progressively increase from lows of ~0.70507 to ~0.70579 (upper values of 0.70526 to 0.70680), and ��Nd values decrease from highs of -1.0 to -4.6 (lows of -1.6 to -7.3). Similarly, O isotopes (�������O) show a slight increase in base level through time from lows of 6.5��� to 7.0��� (highs of 6.75��� ��� 7.5���). Dy/Yb and Sm/Yb ratios also increased systematically from highs of 2.11 to 3.45, and 2.76 to 6.67, respectively. Despite the temporal isotopic variation, there is little isotopic variation with indices of fractionation, suggesting this signal is the consequence of deep magmatic processing, here attributed to an expanding zone of melting, assimilation, storage, and homogenization (MASH) of mantle-derived magma in the deep crust. Upward expansion brought the MASH zone into contact with rocks that were increasingly evolved with respect to Sr and Nd isotopes, explaining the isotopic shifts. Downward expansion of the MASH zone enhanced garnet stability during basalt fractionation, explaining the increased Dy/Yb and Sm/Yb ratios. Mass balance calculations involving Sr, Nd, and O isotope modeling are consistent with a crustal component making up 10 - 30% of AVC lavas, implying that although the history of central Andean magmatism is replete with large scale crustal recycling, the current phase is largely a crust formation event. / Graduation date: 2012
4

Thermal structure and geodynamics of subduction zones

Wada, Ikuko 21 August 2009 (has links)
The thermal structure of subduction zones depends on the age-controlled thermal state of the subducting slab and mantle wedge flow. Observations indicate that the shallow part of the forearc mantle wedge is stagnant and the slab-mantle interface is weakened. In this dissertation, the role of the interface strength in controlling mantle wedge flow, thermal structure, and a wide range of subduction zone processes is investigated through two-dimensional finite-element modelling and a global synthesis of geological and geophysical observations. The model reveals that the strong temperature-dependence of the mantle strength always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle. The interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The sharpness of the transition from decoupling to coupling depends on the rheology assumed and increases with the nonlinearity of the flow system. This bimodal behaviour of the wedge flow gives rise to a strong thermal contrast between the cold stagnant and hot flowing parts of the mantle wedge. The maximum depth of decoupling (MDD) thus dictates the thermal regime of the forearc. Observed surface heat flow patterns and petrologically and geochemically estimated mantle wedge temperatures beneath the volcanic arc require an MDD of 70-80 km in most, if not all, subduction zones regardless of their thermal regime of the slab. The common MDD of 70-80 km explains the observed systematic variations of the petrologic, seismological, and volcanic processes with the thermal state of the slab and thus explains the rich diversity of subduction zones in a unified fashion. Models for warm-slab subduction zones such as Cascadia and Nankai predict shallow dehydration of the slab beneath the cold stagnant part of the mantle wedge, which provides ample fluid for mantle wedge serpentinization in the forearc but little fluid for melt generation beneath the arc. In contrast, models for colder-slab subduction zones such as NE Japan and Kamchatka predict deeper dehydration, which provides greater fluid supply for melt generation beneath the arc and allows deeper occurrence of intraslab earthquakes but less fluid for forearc mantle wedge serpentinization. The common MDD also explains the intriguing uniform configuration of subduction zones, that is, the volcanic arc always tends to be situated where the slab is at about 100 km depth. The sudden onset of mantle wedge flow downdip of the common MDD overshadows the thermal effect of the slab, and the resultant thermal field and slab dehydration control the location of the volcanic arc. The recognition of the fundamental importance of the MDD has important implications to the study of geodynamics and earthquake hazard in subduction zones.
5

Boron as a tracer for material transfer in subduction zones

Rosner, Martin Siegfried January 2003 (has links)
Spät-miozäne bis quartäre Vulkanite der vulkanischen Front und der Back-arc Region der Zentralen Vulkanischen Zone in den Anden weisen eine weite Spannbreite von delta 11B Werten (+4 bis &ndash;7 &permil;) and Borkonzentrationen (6 bis 60 ppm) auf. Die positiven delta 11B Werte der Vulkanite der vulkanischen Front zeigen eine Beteiligung einer 11B-reichen Komponente am Aufbau der andinen Vulkanite, die am wahrscheinlichsten aus Fluiden der alterierten ozeanischen Kruste der abtauchenden Nazca-Platte stammt. Diese Beobachtung macht einen alleinigen Ursprung der untersuchten Laven aus der kontinentalen Kruste und/oder dem Mantelkeil unwahrscheinlich. Der Trend zu systematisch negativeren delta 11B Werten und kleineren B/Nb Verhältnissen von der vulkanischen Front zum Back-arc wird als Resultat einer Borisotopenfraktionierung einhergehend mit einer stetigen Abnahme der Fluidkomponente und einer relativ konstanten krustalen Kontamination, die sich durch relativ gleichbleibende Sr, Nd und Pb Isotopenverhältnisse ausdrückt, interpretiert. Weil die delta 11B Variation über den andinen vulkanischen Bogen sehr gut mit einer modellierten, sich als Funktion der Temperatur dynamisch verändernden, Zusammensetzung des Subduktionszonenfluides übereinstimmt, folgern wir, dass die Borisotopenzusammensetzung von Arc-Vulkaniten durch die sich dynamisch ändernde delta 11B Signatur eines Bor-reichen Subduktionsfluides bestimmt ird. Durch die Abnahme dieses Subduktionsfluides während der Subduktion nimmt der Einfluss der krustalen Kontamination auf die Borisotopie der Arc-Vulkanite im Back-arc zu. In Anbetracht der Borisotopenfraktionierung müssen hohe delta 11B Werte von Arc-Vulkaniten nicht notwendigerweise Unterschiede in der initialen Zusammensetzung der subduzierten Platte reflektieren.<br /> Eine Dreikomponenten Mischungskalkulation zwischen Subduktionsfluid, dem Mantelkeil und der kontinentalen Kruste, die auf Bor-, Strontium- und Neodymiumisotopendaten beruht, zeigt, dass das Subduktionsfluid die Borisotopie des fertilen Mantels dominiert und, dass die primären Arc-Magmen durchschnittlich einen Anteil von 15 bis 30 % krustalem Materiales aufweisen. / Late Miocene to Quaternary volcanic rocks from the frontal arc to the back-arc region of the Central Volcanic Zone in the Andes show a wide range of delta 11B values (+4 to -7 &permil;) and boron concentrations (6 to 60 ppm). Positive delta 11B values of samples from the volcanic front indicate involvement of a 11B-enriched slab component, most likely derived from altered oceanic crust, despite the thick Andean continental lithosphere, and rule out a pure crust-mantle origin for these lavas. The delta 11B values and B concentrations in the lavas decrease systematically with increasing depth of the Wadati-Benioff Zone. This across-arc variation in delta 11B values and decreasing B/Nb ratios from the arc to the back-arc samples are attributed to the combined effects of B-isotope fractionation during progressive dehydration in the slab and a steady decrease in slab-fluid flux towards the back arc, coupled with a relatively constant degree of crustal contamination as indicated by similar Sr, Nd and Pb isotope ratios in all samples. Modelling of fluid-mineral B-isotope fractionation as a function of temperature fits the across-arc variation in delta 11B and we conclude that the B-isotope composition of arc volcanics is dominated by changing delta 11B composition of B-rich slab-fluids during progressive dehydration. Crustal contamination becomes more important towards the back-arc due to the decrease in slab-derived fluid flux. Because of this isotope fractionation effect, high delta 11B signatures in volcanic arcs need not necessarily reflect differences in the initial composition of the subducting slab. <br /> Three-component mixing calculations for slab-derived fluid, the mantle wedge and the continental crust based on B, Sr and Nd isotope data indicate that the slab-fluid component dominates the B composition of the fertile mantle and that the primary arc magmas were contaminated by an average addition of 15 to 30 % crustal material.

Page generated in 0.0482 seconds