• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Évolution de la canalisation génétique dans un modèle quantitatif de réseau de régulation / Evolution of genetic canalization in a quantitative model of gene regulatory networks

Rünneburger, Estelle 19 December 2016 (has links)
La canalisation génétique est définie comme la capacité d’un organisme à avoir un développement constant en dépit des mutations qui l’affectent. A l’heure actuelle, trois hypothèses majoritaires cherchent à expliquer l’apparition de ce processus : évolutive, congruente et intrinsèque. Pour tester ces hypothèses, j’ai choisi d’étudier les réseaux de régulation. Pour cela, j’ai réutilisé un modèle théorique pour simuler in silico l’évolution des architectures génétiques, et les analyser par les outils de la génétique quantitative. J’ai d’abord étudié les comportements évolutifs de notre modèle et sa capacité de réponse à la sélection stabilisante. Outre l’analyse de l’impact des paramètres du modèle, j’ai mis en évidence l’absence d’équilibre mutation – sélection – dérive après des milliers de générations du fait de l’augmentation progressive de la canalisation. J’ai ensuite montré que les réseaux soumis à des mutations fréquentes et fortes, sélectionnés vers des optimums phénotypiques extrêmes, et dans lesquels certains gènes sont laissés libres d’évoluer sont plus aptes à faire évoluer de la canalisation génétique. Ces résultats nous ont amenés à proposer un double mécanisme impliqué dans l’évolution de la canalisation dans les réseaux de régulation : la réduction de la cible mutationnelle et la redondance de la régulation génique. Je termine ce manuscrit en présentant quelques pistes d’études complémentaires, portant notamment sur l’étude de la canalisation contre les perturbations environnementales et l’utilisation de modèles alternatifs. / Genetic canalization is defined as the capacity of an organism to undergo a normal development even when the genome is altered by mutations. Currently, three main hypotheses are prone to explain the apparition of such a process: evolutionary, congruent and intrinsic. To test these hypotheses, I chose to study gene regulatory networks. To this end, I used a theoretical model, ran in silico simulations, and analyzed the genetic architecture by using quantitative genetics tools. I first studied the evolutionary behavior of the model, and its capacity to respond to stabilizing selection. In addition to the sensitivity analysis to model parameters, I evidenced the absence of mutation-selection-drift equilibrium after several thousand generations, which reveals the evolution of canalization. I also showed that networks submitted to frequent and large mutations, and/or selected toward extreme phenotypic optima are more prone to evolve genetic canalization. This result leads us to propose a two-fold mechanism able to explain the evolution of canalization in gene regulatory networks: shrinkage of mutational targets and redundancy in genetic regulation. At the end of this manuscript, I propose some possible future studies, such as the study of canalization towards environmental perturbations, and use of alternative models.
2

From wing pattern genes to the chemistry of speciation : an integrative dissection of the early stages of diversification in mimetic butterflies / Une étude intégrative des stades précoces de l’isolement reproducteur chez les papillons Heliconius

Huber, Bárbara 25 November 2015 (has links)
Comment la diversification biologique peut-elle avoir lieu malgré les échanges génétiques? Comment les barrières reproductives entre espèces évoluent-elles et fonctionnent-elles? Les changements adaptatifs de certains traits favorisent-ils la diversification et la spéciation? Ces questions ouvertes en biologie évolutive constituent la base de ce projet. Pour y répondre, nous nous sommes intéressés aux papillons du genre néo-tropical Heliconius qui constituent une partie importante des communautés diversifiées de papillons néotropicaux. Les papillons de ce groupe sont immangeables pour les prédateurs, arborent des colorations d’avertissement qui signalent leur toxicité, et miment d’autres papillons toxiques dans leurs communautés locales. Ce genre a connu une radiation adaptative des motifs colorés soumis à la sélection naturelle favorisant le mimétisme de divers signaux locaux, mais ces motifs sont également connus comme signaux intraspécifiques favorisant les appariements homogames. Mes travaux ont permis d’approfondir les connaissances actuelles sur la fonction écologique et la base génétique de la couleur des ailes chez ces papillons, et d’explorer l'importance de la couleur des ailes par rapport aux signaux chimiques au cours des premières étapes de diversification. Dans cette optique, j’ai caractérisé la divergence adaptive entre les taxons à différents stades du continuum de spéciation, par une approche intégrative combinant des données génomiques, phénotypiques, comportementales, chimiques et écologiques. Plus précisément, j’ai étudié le sous-clade de Heliconius appelé sylvaniformes, contenant des espèces de papillons aux motifs tigrés, qui participent à des relations de mimétisme avec de nombreuses autres espèces fortement apparentées ou non. Mes travaux incluent la description comparative de l'architecture génétique des motifs colorés adaptatifs parallèlement chez les espèces H. hecale et H. ismenius, en utilisant des croisements, du génotypage génomique à haut débit, et de la morphométrie des motifs colorés. J’ai également exploré l'importance de la sélection naturelle et sexuelle sur les locus contrôlant ces motifs colorés aux stades précoces de divergence dans ce genre. En particulier, j’ai analysé la structure et le maintien de la zone d’hybridation entre deux races parapatriques de H. hecale montrant des colorations différentes, en combinant la génétique et la génomique des populations, ainsi que l’analyse phénotypique de clines et des tests comportementaux sur le choix de partenaire chez les mâles. Enfin, j’ai effectué des analyses génomiques de la divergence et du flux de gènes en me basant sur des données de re-séquençage de génomes complets afin de rechercher des traces d'introgression entre des espèces co-mimétiques et étroitement apparentées. Ceci a été également couplé à des expériences de préférence et de comportement sexuel, ainsi qu’à des analyses chimiques montrant d'importantes différences dans des composés qui pourraient intervenir dans la reconnaissance spécifique et le maintien des limites entre espèces. Dans l'ensemble, mes travaux montrent que bien que la sélection agissant sur les motifs colorés des ailes ait été centrale dans la diversification du genre Heliconius, l'accumulation d'autres barrières au flux de gènes peut jouer un rôle important dans l’aboutissement du processus de spéciation. / How does biological diversification occur in the face of genetic exchange? How do reproductive barriers evolve and function? What is the role of adaptive traits in promoting diversification and speciation? These open questions in evolutionary biology are at the core of this project. In order to tackle them, we have focused on butterflies in the neo-tropical genus which are an important component of the diverse butterfly communities in the Neo-tropics. Butterflies in the genus Heliconius are unpalatable to predators, use warning colours to advertise their defences, and mimic other defended butterflies in their local communities. The genus has undergone an adaptive radiation in wing colour patterns as a result of natural selection for mimicry, and is also well known for assortative mating based on wing pattern. I have extended the current knowledge about the ecological function and the genetic basis of wing color patterns in these butterflies and explored the importance of wing coloration relative to chemical signaling in the early stages of diversification. To this aim, I have characterised the adaptive divergence between lineages at different stages of the speciation continuum, by integrating genomic, phenotypic, behavioural, chemical and ecological data. More precisely, I have studied the so-called silvaniform sub-clade of Heliconius, known for harbouring species with tiger patterns that participate in mimicry with large groups of other closely and distantly-related species. My work includes the comparative description of the genetic architecture of wing pattern adaptation in two species, H. hecale and H. ismenius, using crosses, genome-wide next-generation genotyping, and advanced morphometrics of colour patterns. I have also explored the importance of natural and sexual selection on wing-patterning loci at early stages of divergence in the genus. In particular, I have analysed the structure and maintenance of a hybrid zone between two distinctly coloured parapatric races of H. hecale by using a combination of population genetics and genomics, coupled to a phenotypic analysis of the clines and to behavioural assays on male-based mate choice. Finally, I have carried out genome-wide analyses of divergence and gene flow with whole genome sequencing data to look for evidence of introgression between coexisting, hybridising co-mimetic species. This was again coupled to experiments on mating preferences and behavior, and yielded evidence for important differences in putative pheromone signals which may mediate species recognition and the maintenance of species boundaries. Overall, my results show that although selection on wing pattern divergence have been central to the diversification of the genus Heliconius, the accumulation of other barriers to gene flow may be important for the speciation process to be completed.
3

Hunting for causal variants in microbial genomes

Chen, Peter 11 1900 (has links)
L'un des objectifs centraux de la biologie est de comprendre comment l'ADN, la séquence primaire, donne lieu à des traits observables. À cette fin, nous examinons ici des méthodes pour identifier les composants génétiques qui influencent les traits microbiens. Par « identifier », nous entendons l'élucidation à la fois l'état allélique et de la position physique de chaque variante causale d'un phénotype d'intérêt à la résolution des nucléotides de paires de bases. Nous nous sommes concentrés sur les études d'association génomique (genome-wide association studies; GWAS) en tant qu'approche générale d’étudier l'architecture génétique des traits. L'objectif global de cette thèse était d'examiner de manière critique les méthodologies GWAS et de les considérer en pratique dans des populations microbiennes fortement clonales et non- clonales (i.e. avec recombinaison fréquent). Le domaine de la GWAS microbienne est relativement nouveau par rapport aux quinze dernières années de la GWAS humaine, et en tant que tel, nous avons commencé par un examen de l'état de la GWAS microbienne. Nous avons posé deux questions principales : 1) Les méthodes GWAS humaines fonctionnent-elles facilement et sans modification pour les populations microbiennes ? 2) Et sinon, quels sont les problèmes méthodologiques centraux et les modifications nécessaires pour la GWAS microbienne? À partir de ces résultats, nous avons ensuite détaillé le déséquilibre de liaison (linkage disequilibrium; LD) comme principal obstacle dans la GWAS microbien, et nous avons présenté une nouvelle méthode, POUTINE, pour relever ce défi en exploitant les mutations homoplasiques pour briser implicitement la structure LD. Le reste de la thèse présente à la fois les méthodes traditionnelles GWAS (comptage des allèles) et POUTINE (comptage d’homoplasies) appliquées à une population hautement recombinogène de génomes de vibrions marins. Malgré une taille d'échantillon modeste, nous donnons un premier aperçu de l'architecture génétique de la résistance aux bactériophages dans une population naturelle, tout en montrant que les récepteurs des bactériophages jouent un rôle primordial. Ce résultat est en pleine cohérence avec des expériences en laboratoire de coévolution phage-bactérie. Il est important de noter que cette architecture met en évidence à quel point la sélection positive peut sculpter certains traits microbiens différemment de nombreux traits complexes humains, qui sont généralement soumis à une faible sélection purificatrice. Plus précisément, nous avons identifié des mutations à effet important à haute fréquence qui sont rarement observées dans les phénotypes complexes humains où de nombreuses mutations à faible effet contribuent à l'héritabilité. La thèse se termine par des perspectives sur les voies à suivre pour la GWAS microbienne. / One of the central goals of biology is to understand how DNA, the primary sequence, gives rise to observable traits. To this aim, we herein examine methods to identify the genetic components that influence microbial traits. By "identify" we mean the elucidation of both the allelic state and physical position of each causal variant of a phenotype of interest down to the base-pair nucleotide resolution. Our focus has been on genome-wide association studies (GWAS) as a general approach to dissecting the genetic architecture of traits. The overarching aim of this thesis was to critically examine GWAS methodologies and to consider them in practice in both strongly clonal and highly recombining microbial populations. The field of microbial GWAS is relatively new compared to the over fifteen years of human GWAS, and as such, we began this work with an examination of the state of microbial GWAS. We asked and attempted to answer two main questions: 1) Do human GWAS methods readily work without modification for microbial populations? 2) And if not, what are the central methodological problems and changes that are required for a successful microbial GWAS? Building from these findings, we then detailed linkage disequilibrium (LD) as the primary obstacle in microbial GWAS, and we presented a new method, POUTINE, to address this challenge by harnessing homoplasic mutations to implicitly break LD structure. The remainder of the thesis showcases both traditional GWAS methods (allele counting) and POUTINE applied to a highly recombining population of marine vibrio genomes. Despite a small sample size, we provide a first glimpse into the genetic architecture of bacteriophage resistance in a natural population and show that bacteriophage receptors play a primary role consistent with experimental populations of phage-bacteria coevolution. Importantly, this architecture highlights how strong positive selection can sculpt some microbial traits differently than many human complex traits, which are generally under weak purifying selection. Specifically, we identified common frequency, large-effect mutations that are rarely observed in human complex phenotypes where many low-effect mutations are thought to contribute to the bulk of heritability. The thesis concludes with perspectives on ways forward for microbial GWAS.

Page generated in 0.081 seconds