• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deep Learning Based High-Resolution Statistical Downscaling to Support Climate Impact Modelling: The Case of Species Distribution Projections

Quesada Chacón, Dánnell 16 May 2024 (has links)
Urgent scientifically-informed action is needed to stabilise the Earth System amidst anthropogenic climate change. Particularly, the notable transgression of the ‘biosphere integrity’ Planetary Boundary needs to be addressed. Modern Earth System Models struggle to accurately represent regional to local-scale climate features and biodiversity aspects. Recent developments allow to tackle these issues using Artificial Intelligence. This dissertation focuses on two main aspects: (i) deriving high spatio-temporal resolution climate data from coarser models; and (ii) integrating high-temporal-resolution climate data into Species Distribution Models. Three specific objectives were defined: Obj1 Improving Perfect Prognosis – Statistical Downscaling methods through modern Deep Learning algorithms. Obj2 Downscaling a high-resolution multivariate climate ensemble. Obj3 Employ the resulting dataset to improve Species Distribution Models’ projections. The objectives are connected to the three articles that support this cumulative dissertation. Its scope is limited to the Free State of Saxony, Germany, where local high-resolution climate data and high-quality observations of endangered vascular plant species were employed. From a broader perspective, these efforts should contribute to the overarching goal of bridging the gap between the scales of species distribution and climate models while establishing open-source, reproducible, and scalable containerised frameworks. Recent Deep Learning algorithms were leveraged to accomplish (i). The proposed frameworks enhance previous performance of Perfect Prognosis – Statistical Downscaling approaches, while ensuring repeatability. The key near-surface variables considered are precipitation, water vapour pressure, radiation, wind speed, and, maximum, mean and minimum temperature. The assumptions that support the Perfect Prognosis approach were thoroughly examined, confirming the robustness of the methods. The downscaled ensemble exhibits a novel output resolution of daily 1 km, which can serve as input for multiple climate impact studies, especially for local-scale decision-making and in topographically complex regions. Considerable methodological implementations were proposed and thoroughly analysed to achieve (ii). Despite notable limitations, Species Distribution Models are frequently used in climate change conservation planning. Thus, recent developments in climate data resolution could improve their usefulness and reliability, which have been previously constraint to coarse temporal aggregates in the projection domain. The presented framework provides fine-grained species suitability projections and satisfactory spatio-temporal transferability, albeit worrying trends. These improved projections are a step forward towards tailored conservation efforts. Limitations of Machine Learning methods and Species Distribution Models are addressed. Substantial avenues for future improvements are thoroughly discussed. As results suggest further reduction of suitable habitats, yet another call for swift action towards low-carbon societies is made. This requires maximising climate change mitigation and adaptation measures, along with a swift transition from short-term profit-driven policies to long-term sustainable development, but primarily, a collective shift in consciousness from anthropocentric positions to ecocentric policies and societies.:Contents Declaration of conformity........................................................ I Abstract....................................................................... III Zusammenfassung.................................................................. V Resumen........................................................................ VII Acknowledgments................................................................. IX List of Figures................................................................. XV List of Tables................................................................. XIX Symbols and Acronyms........................................................... XXI I Prelude & Foundations 1 1 Introduction................................................................... 3 1.1 Motivation – Human Impact on Earth....................................... 3 1.2 Earth System Modelling and Downscaling................................... 5 1.3 Biosphere’s Response to Recent Changes................................... 8 1.4 Species Distribution Models.............................................. 9 1.5 Objectives.............................................................. 10 1.6 Scope................................................................... 10 1.7 Outline................................................................. 10 2 Methodological Basis.......................................................... 13 2.1 Introduction to Artificial Intelligence Methods......................... 13 2.1.1 Artificial Intelligence........................................... 13 2.1.2 Machine Learning.................................................. 14 2.1.3 Deep Learning..................................................... 14 2.2 Downscaling Techniques.................................................. 15 2.2.1 Dynamical Downscaling............................................. 15 2.2.2 Statistical Downscaling........................................... 15 2.2.2.1 Model Output Statistics................................... 16 2.2.2.2 Perfect Prognosis......................................... 16 2.3 Species Distribution Models: Temporal Aspects........................... 17 2.4 Computational Framework................................................. 18 2.4.1 High-Performance Computing........................................ 18 2.4.2 Containers........................................................ 18 2.5 Remarks on Reproducibility.............................................. 19 II Articles’ Synthesis 21 3 Data.......................................................................... 23 3.1 Study Area.............................................................. 23 3.2 ReKIS................................................................... 24 3.3 ERA5.................................................................... 24 3.4 CORDEX.................................................................. 24 3.5 Species Occurrences..................................................... 25 3.6 WorldClim............................................................... 26 4 Methodological Implementations................................................ 27 4.1 Advancing Statistical Downscaling....................................... 27 4.1.1 Transfer Function Calibration.................................... 27 4.1.2 Evaluation....................................................... 29 4.1.3 Repeatability.................................................... 29 4.2 Downscaling a Multivariate Ensemble..................................... 30 4.2.1 Transfer Function Adaptations.................................... 30 4.2.2 Validation....................................................... 30 4.2.3 Perfect Prognosis Assumptions Evaluation......................... 31 4.3 Integrating High-Temporal-Resolution into SDMs.......................... 32 4.3.1 Climate Data..................................................... 32 4.3.1.1 Predictor Sets.......................................... 32 4.3.1.2 Temporal Approaches..................................... 33 4.3.2 SDM Implementation............................................... 33 4.3.3 Spatio-Temporal Thinning & Trimming.............................. 33 4.3.4 Meta-analysis.................................................... 34 4.3.5 Pseudo-Reality Assessment........................................ 34 4.3.6 Spatio-Temporal Transferability.................................. 34 5 Results & Discussions......................................................... 35 5.1 Advancing Statistical Downscaling....................................... 35 5.1.1 Performance Improvement.......................................... 35 5.1.2 Repeatability.................................................... 36 5.1.3 Transfer Function Suitability.................................... 38 5.2 Downscaling a Multivariate Ensemble..................................... 39 5.2.1 Transfer Function performance.................................... 39 5.2.2 Bias-Correction.................................................. 40 5.2.3 Pseudo-Reality................................................... 42 5.2.4 Projections...................................................... 43 5.3 Integrating High-Temporal-Resolution into SDMs.......................... 45 5.3.1 Predictor Set Evaluation for H2k................................. 45 5.3.2 Temporal Approach Comparison..................................... 46 5.3.3 Spatio-Temporal Transferability.................................. 47 5.3.4 Suitability Projections.......................................... 47 III Insights 51 6 Summary....................................................................... 53 6.1 Article A1.............................................................. 53 6.2 Article A2.............................................................. 54 6.3 Article A3.............................................................. 56 7 Conclusions and Outlook....................................................... 59 References 65 Articles 81 A1 Repeatable high-resolution statistical downscaling through deep learning..... 83 A2 Downscaling CORDEX Through Deep Learning to Daily 1 km Multivariate Ensemble in Complex Terrain............................................................. 103 A3 Integrating High-Temporal-Resolution Climate Projections into Species Distribu- tion Model..................................................................... 127 / Um das Erdsystem angesichts des anthropogenen Klimawandels zu stabilisieren, sind Maßnahmen auf Basis wissenschaftlicher Erkenntnisse dringend erforderlich. Insbesondere muss die drastisch Überschreitung der planetaren Grenze ‘Integrität der Biosphäre’ angegangen werden. Bisher haben aber Modelle des Erdsystems Schwierigkeiten, regionale bis lokale Klimamerkmale und Aspekte der Biodiversität genau abzubilden. Aktuelle Entwicklungen ermöglichen es, diese Herausforderungen mithilfe von Künstlicher Intelligenz anzugehen. Diese Dissertation konzentriert sich auf zwei Hauptaspekte: (i) die Ableitung von Klimadaten mit hoher räumlicher und zeitlicher Auflösung aus groberen Modellen und (ii) die Integration von Klimadaten mit hoher zeitlicher Auflösung in Modelle zur Artverbreitung. Es wurden drei konkrete Ziele definiert: Ziel1 Verbesserung von Perfect Prognosis – Statistische Downscaling-Methoden durch moderne Deep Learning-Algorithmen Ziel2 Downscaling eines hochauflösenden multivariaten Klimaensembles Ziel3 Verwendung des resultierenden Datensatzes zur Verbesserung von Prognosen in Modellen zur Artverbreitung Diese Ziele werden in drei wissenschaftlichen Artikeln beantwortet, auf die diese kumulative Dissertation sich stützt. Der Anwendungsbereich erstreckt sich auf den Freistaat Sachsen, Deutschland, wo lokale hochauflösende Klimadaten und hochwertige Beobachtungen gefährdeter Gefäßpflanzenarten verwendet wurden. In einer breiteren Perspektive tragen diese Bemühungen dazu bei, die Kluft zwischen regionalen sowie zeitlichen Skalen der Artverbreitung und Klimamodellen zu überbrücken und gleichzeitig Open-Source-, reproduzierbare und skalierbare containerisierte Frameworks zu etablieren. Aktuelle Deep Learning-Algorithmen wurden eingesetzt, um Hauptaspekt (i) zu erreichen. Die vorgeschlagenen Frameworks verbessern die bisherige Leistung von Perfect Prognosis – Statistische Downscaling-Ansätzen und gewährleisten gleichzeitig die Wiederholbarkeit. Die wichtigsten bodennahen Variablen, die berücksichtigt werden, sind Niederschlag, Wasserdampfdruck, Strahlung, Windgeschwindigkeit sowie Maximal-, Durchschnitts- und Minimaltemperatur. Die Annahmen, die den Perfect Prognosis-Ansatz unterstützen, wurden analysiert und bestätigen die Robustheit der Methoden. Das downscaled Ensemble weist eine neuartige Auflösung von 1 km auf Tagesbasis auf, welches als Grundlage für mehrere Studien zu den Auswirkungen des Klimawandels dienen kann, insbesondere für Entscheidungsfindung auf lokaler Ebene und in topografisch komplexen Regionen. Es wurden umfassende methodische Implementierungen vorgeschlagen und analysiert, um Hauptaspekt (ii) zu erreichen. Trotz großer Einschränkungen werden Modelle zur Artverbreitung häufig in der Klimaschutzplanung eingesetzt. Daher könnten aktuelle Entwicklungen in der Klimadatenauflösung deren Nützlichkeit und Zuverlässigkeit verbessern, die bisher auf grobe zeitliche Aggregatformen im Projektionsbereich beschränkt waren. Das vorgestellte Framework bietet feingliedrige Prognosen zur Eignung von Arten und zufriedenstellende räumlich-zeitliche Übertragbarkeit, trotz besorgniserregender Trends. Diese verbesserten Prognosen sind ein Schritt in Richtung maßgeschneiderter Naturschutzmaßnahmen. Einschränkungen von Machine Learning-Methoden und Modellen zur Artverbreitung werden untersucht. Substanzielle Möglichkeiten zur zukünftigen Verbesserung werden ausführlich erörtert. Da die Ergebnisse darauf hinweisen, dass geeignete Lebensräume weiter abnehmen, wird erneut zum schnellen Handeln in Richtung kohlenstoffarmer Gesellschaften aufgerufen. Dies erfordert die Maximierung von Maßnahmen zur Bekämpfung des Klimawandels und zur Anpassung, zusammen mit einem raschen Übergang von kurzfristig Profitorientierten Politiken zu langfristiger nachhaltiger Entwicklung, aber vor allem zu einem kollektiven Bewusstseinswandel von anthropozentrischen Positionen zu ökozentrischen Politiken und Gesellschaften.:Contents Declaration of conformity........................................................ I Abstract....................................................................... III Zusammenfassung.................................................................. V Resumen........................................................................ VII Acknowledgments................................................................. IX List of Figures................................................................. XV List of Tables................................................................. XIX Symbols and Acronyms........................................................... XXI I Prelude & Foundations 1 1 Introduction................................................................... 3 1.1 Motivation – Human Impact on Earth....................................... 3 1.2 Earth System Modelling and Downscaling................................... 5 1.3 Biosphere’s Response to Recent Changes................................... 8 1.4 Species Distribution Models.............................................. 9 1.5 Objectives.............................................................. 10 1.6 Scope................................................................... 10 1.7 Outline................................................................. 10 2 Methodological Basis.......................................................... 13 2.1 Introduction to Artificial Intelligence Methods......................... 13 2.1.1 Artificial Intelligence........................................... 13 2.1.2 Machine Learning.................................................. 14 2.1.3 Deep Learning..................................................... 14 2.2 Downscaling Techniques.................................................. 15 2.2.1 Dynamical Downscaling............................................. 15 2.2.2 Statistical Downscaling........................................... 15 2.2.2.1 Model Output Statistics................................... 16 2.2.2.2 Perfect Prognosis......................................... 16 2.3 Species Distribution Models: Temporal Aspects........................... 17 2.4 Computational Framework................................................. 18 2.4.1 High-Performance Computing........................................ 18 2.4.2 Containers........................................................ 18 2.5 Remarks on Reproducibility.............................................. 19 II Articles’ Synthesis 21 3 Data.......................................................................... 23 3.1 Study Area.............................................................. 23 3.2 ReKIS................................................................... 24 3.3 ERA5.................................................................... 24 3.4 CORDEX.................................................................. 24 3.5 Species Occurrences..................................................... 25 3.6 WorldClim............................................................... 26 4 Methodological Implementations................................................ 27 4.1 Advancing Statistical Downscaling....................................... 27 4.1.1 Transfer Function Calibration.................................... 27 4.1.2 Evaluation....................................................... 29 4.1.3 Repeatability.................................................... 29 4.2 Downscaling a Multivariate Ensemble..................................... 30 4.2.1 Transfer Function Adaptations.................................... 30 4.2.2 Validation....................................................... 30 4.2.3 Perfect Prognosis Assumptions Evaluation......................... 31 4.3 Integrating High-Temporal-Resolution into SDMs.......................... 32 4.3.1 Climate Data..................................................... 32 4.3.1.1 Predictor Sets.......................................... 32 4.3.1.2 Temporal Approaches..................................... 33 4.3.2 SDM Implementation............................................... 33 4.3.3 Spatio-Temporal Thinning & Trimming.............................. 33 4.3.4 Meta-analysis.................................................... 34 4.3.5 Pseudo-Reality Assessment........................................ 34 4.3.6 Spatio-Temporal Transferability.................................. 34 5 Results & Discussions......................................................... 35 5.1 Advancing Statistical Downscaling....................................... 35 5.1.1 Performance Improvement.......................................... 35 5.1.2 Repeatability.................................................... 36 5.1.3 Transfer Function Suitability.................................... 38 5.2 Downscaling a Multivariate Ensemble..................................... 39 5.2.1 Transfer Function performance.................................... 39 5.2.2 Bias-Correction.................................................. 40 5.2.3 Pseudo-Reality................................................... 42 5.2.4 Projections...................................................... 43 5.3 Integrating High-Temporal-Resolution into SDMs.......................... 45 5.3.1 Predictor Set Evaluation for H2k................................. 45 5.3.2 Temporal Approach Comparison..................................... 46 5.3.3 Spatio-Temporal Transferability.................................. 47 5.3.4 Suitability Projections.......................................... 47 III Insights 51 6 Summary....................................................................... 53 6.1 Article A1.............................................................. 53 6.2 Article A2.............................................................. 54 6.3 Article A3.............................................................. 56 7 Conclusions and Outlook....................................................... 59 References 65 Articles 81 A1 Repeatable high-resolution statistical downscaling through deep learning..... 83 A2 Downscaling CORDEX Through Deep Learning to Daily 1 km Multivariate Ensemble in Complex Terrain............................................................. 103 A3 Integrating High-Temporal-Resolution Climate Projections into Species Distribu- tion Model..................................................................... 127 / Acción urgente científicamente informada es necesaria para estabilizar el sistema terrestre en medio del cambio climático antropogénico. En particular, la notable transgresión del límite planetario de ’integridad de la biosfera’ debe abordarse. Los modernos modelos del sistema terrestre tienen dificultades para representar con precisión las características climáticas a escala regional y local, así como los aspectos de la biodiversidad. Desarrollos recientes permiten abordar estos problemas mediante la inteligencia artificial. Esta disertación se enfoca en dos aspectos principales: (i) derivar datos climáticos de alta resolución espacio-temporal a partir de modelos más gruesos; y (ii) integrar datos climáticos de alta resolución temporal en modelos de distribución de especies. Se definieron tres objetivos específicos: Obj1 Mejorar los métodos de pronóstico perfecto – reducción de escala estadística mediante algoritmos modernos de aprendizaje profundo. Obj2 Generar un conjunto climático multivariado de alta resolución. Obj3 Emplear el conjunto de datos resultante para mejorar las proyecciones de los modelos de distribución de especies. Los objetivos están vinculados a los tres artículos que respaldan esta disertación acumulativa. Su alcance se limita al Estado Libre de Sajonia, Alemania, donde se emplearon datos climáticos locales de alta resolución y observaciones de alta calidad de especies de plantas vasculares en peligro de extinción. Desde una perspectiva más amplia, estos esfuerzos deberían contribuir a la meta general de cerrar la brecha entre las escalas de la distribución de especies y los modelos climáticos, mientras que se establecen marcos de trabajo contenedorizados de código abierto, reproducibles y escalables. Algoritmos recientes de aprendizaje profundo fueron aprovechados para lograr (i). Los marcos de trabajo propuestos mejoran el rendimiento previo de los métodos de pronóstico perfecto – reducción de escala estadística, al tiempo que garantizan la repetibilidad. Las variables clave de la superficie cercana consideradas son precipitación, presión de vapor de agua, radiación, velocidad del viento, así como la temperatura máxima, media y mínima. Se examinaron meticulosamente las suposiciones que respaldan el método de pronóstico perfecto, confirmando la robustez de las propuestas. El conjunto reducido de escala exhibe una novedosa resolución diaria de 1 km, el cual puede servir como insumo para múltiples estudios de impacto climático, especialmente para la toma de decisiones a nivel local y en regiones topográficamente complejas. Se propusieron y analizaron minuciosamente considerables implementaciones metodológicas para lograr (ii). A pesar de sus notables limitaciones, los modelos de distribución de especies son utilizados con frecuencia en la planificación de la conservación debido al cambio climático. Por lo tanto, los desarrollos recientes en la resolución de datos climáticos podrían mejorar su utilidad y confiabilidad, ya que antes se limitaban a agregados temporales gruesos en el caso de las proyecciones. El marco de trabajo presentado proporciona proyecciones de idoneidad de especies detalladas y una transferibilidad espacio-temporal satisfactoria, aunque con tendencias preocupantes. Estas proyecciones mejoradas son un paso adelante en los esfuerzos de conservación a la medida. Se abordan las limitaciones de los métodos de aprendizaje automático y de los modelos de distribución de especies. Se discuten a fondo posibilidades sustanciales para futuras mejoras. Dado que los resultados sugieren una mayor reducción de hábitats adecuados, se hace otro llamado a la acción rápida hacia sociedades bajas en carbono. Esto requiere maximizar las medidas de mitigación y adaptación al cambio climático, junto con una transición rápida de políticas orientadas a beneficios a corto plazo hacia un desarrollo sostenible a largo plazo, pero principalmente, un cambio colectivo de conciencia, desde posiciones antropocéntricas hacia políticas y sociedades ecocéntricas.:Contents Declaration of conformity........................................................ I Abstract....................................................................... III Zusammenfassung.................................................................. V Resumen........................................................................ VII Acknowledgments................................................................. IX List of Figures................................................................. XV List of Tables................................................................. XIX Symbols and Acronyms........................................................... XXI I Prelude & Foundations 1 1 Introduction................................................................... 3 1.1 Motivation – Human Impact on Earth....................................... 3 1.2 Earth System Modelling and Downscaling................................... 5 1.3 Biosphere’s Response to Recent Changes................................... 8 1.4 Species Distribution Models.............................................. 9 1.5 Objectives.............................................................. 10 1.6 Scope................................................................... 10 1.7 Outline................................................................. 10 2 Methodological Basis.......................................................... 13 2.1 Introduction to Artificial Intelligence Methods......................... 13 2.1.1 Artificial Intelligence........................................... 13 2.1.2 Machine Learning.................................................. 14 2.1.3 Deep Learning..................................................... 14 2.2 Downscaling Techniques.................................................. 15 2.2.1 Dynamical Downscaling............................................. 15 2.2.2 Statistical Downscaling........................................... 15 2.2.2.1 Model Output Statistics................................... 16 2.2.2.2 Perfect Prognosis......................................... 16 2.3 Species Distribution Models: Temporal Aspects........................... 17 2.4 Computational Framework................................................. 18 2.4.1 High-Performance Computing........................................ 18 2.4.2 Containers........................................................ 18 2.5 Remarks on Reproducibility.............................................. 19 II Articles’ Synthesis 21 3 Data.......................................................................... 23 3.1 Study Area.............................................................. 23 3.2 ReKIS................................................................... 24 3.3 ERA5.................................................................... 24 3.4 CORDEX.................................................................. 24 3.5 Species Occurrences..................................................... 25 3.6 WorldClim............................................................... 26 4 Methodological Implementations................................................ 27 4.1 Advancing Statistical Downscaling....................................... 27 4.1.1 Transfer Function Calibration.................................... 27 4.1.2 Evaluation....................................................... 29 4.1.3 Repeatability.................................................... 29 4.2 Downscaling a Multivariate Ensemble..................................... 30 4.2.1 Transfer Function Adaptations.................................... 30 4.2.2 Validation....................................................... 30 4.2.3 Perfect Prognosis Assumptions Evaluation......................... 31 4.3 Integrating High-Temporal-Resolution into SDMs.......................... 32 4.3.1 Climate Data..................................................... 32 4.3.1.1 Predictor Sets.......................................... 32 4.3.1.2 Temporal Approaches..................................... 33 4.3.2 SDM Implementation............................................... 33 4.3.3 Spatio-Temporal Thinning & Trimming.............................. 33 4.3.4 Meta-analysis.................................................... 34 4.3.5 Pseudo-Reality Assessment........................................ 34 4.3.6 Spatio-Temporal Transferability.................................. 34 5 Results & Discussions......................................................... 35 5.1 Advancing Statistical Downscaling....................................... 35 5.1.1 Performance Improvement.......................................... 35 5.1.2 Repeatability.................................................... 36 5.1.3 Transfer Function Suitability.................................... 38 5.2 Downscaling a Multivariate Ensemble..................................... 39 5.2.1 Transfer Function performance.................................... 39 5.2.2 Bias-Correction.................................................. 40 5.2.3 Pseudo-Reality................................................... 42 5.2.4 Projections...................................................... 43 5.3 Integrating High-Temporal-Resolution into SDMs.......................... 45 5.3.1 Predictor Set Evaluation for H2k................................. 45 5.3.2 Temporal Approach Comparison..................................... 46 5.3.3 Spatio-Temporal Transferability.................................. 47 5.3.4 Suitability Projections.......................................... 47 III Insights 51 6 Summary....................................................................... 53 6.1 Article A1.............................................................. 53 6.2 Article A2.............................................................. 54 6.3 Article A3.............................................................. 56 7 Conclusions and Outlook....................................................... 59 References 65 Articles 81 A1 Repeatable high-resolution statistical downscaling through deep learning..... 83 A2 Downscaling CORDEX Through Deep Learning to Daily 1 km Multivariate Ensemble in Complex Terrain............................................................. 103 A3 Integrating High-Temporal-Resolution Climate Projections into Species Distribu- tion Model..................................................................... 127
2

Understanding geographies of threat: Impacts of habitat destruction and hunting on large mammals in the Chaco

Romero-Muñoz, Alfredo 23 September 2021 (has links)
Die Hauptursachen für die derzeitige weltweite Krise der biologischen Vielfalt sind Lebensraumzerstörung und Übernutzung. Wir wissen jedoch nicht, wie sich diese beiden Faktoren einzeln und zusammen auf die verschiedenen Aspekte biologischer Vielfalt auswirken und wie sie sich im Laufe der Zeit verändern. Da beide Bedrohungen weit verbreitet sind, verhindern dies die Entwicklung wirksamer Schutzstrategien. Das übergeordnete Ziel dieser Arbeit war räumliche und zeitliche Veränderungsmuster der Auswirkungen von Lebensraumzerstörung und Übernutzung auf die biologische Vielfalt zu verstehen. Ich habe diese Bedrohungsgeographien mit hoher räumlicher Auflösung und über drei Jahrzehnte hinweg für verschiedene Aspekte biologischer Vielfalt untersucht: Arten, Lebensgemeinschaften und taxonomische, phylogenetische und funktionale Facetten biologischer Vielfalt. Ich konzentrierte mich auf den 1,1 Millionen km² großen Gran Chaco, den größten tropischen Trockenwald der Welt und einen globalen Entwaldungs-Hotspot. Meine Ergebnisse zeigen, dass sich im Laufe von 30 Jahren die räumlichen Auswirkungen der einzelnen Bedrohungen auf größere Gebiete ausdehnten als nur auf die abgeholzte Fläche. Dies führte zu einem Verlust an hochwertigen und sicheren Gebieten für den Jaguar, die gesamte Großsäugergemeinschaft und alle Facetten der Säugetiervielfalt. Beide Bedrohungen trugen wesentlich zum Rückgang biologischer Vielfalt bei, ihre relative Bedeutung variierte jedoch je nach Art und Facette der biologischen Vielfalt. Zudem haben die Gebiete, in denen beide Bedrohungen zusammenwirken, im Laufe der Zeit zugenommen, was den Verlust der biologischen Vielfalt wahrscheinlich noch verschlimmert hat. Diese Arbeit unterstreicht, wie wichtig es ist, die Auswirkungen mehrerer Bedrohungen im Laufe der Zeit gemeinsam zu bewerten, um den menschlichen Einfluss auf die biologische Vielfalt besser verstehen zu können und wirksame Schutzstrategien zu finden. / Los principales factores de la actual crisis de la biodiversidad global son la destrucción del hábitat y la sobreexplotación. Sin embargo, desconocemos su impacto espacial, tanto individual como combinado, sobre los diferentes aspectos de la biodiversidad, y cómo cambian en el tiempo. Como ambas amenazas son comunes, estos vacíos de conocimiento impiden elaborar estrategias de conservación más eficaces. El objetivo general de esta tesis fue comprender cómo los impactos de la destrucción del hábitat y la sobreexplotación en la biodiversidad cambian en el espacio y en el tiempo. Evalué estas geografías de las amenazas a altas resoluciones espaciales y a lo largo de tres décadas para diferentes aspectos de la biodiversidad: especies, comunidades y las facetas taxonómica, filogenética y funcional de la biodiversidad. Me centré en el Gran Chaco, de 1,1 millones de km², el mayor bosque seco tropical del mundo y un foco global de deforestación. Los resultados revelan que, a lo largo de 30 años, los impactos espaciales de cada una de las amenazas se extendieron por areas mayores que la superficie deforestada. Esto dio lugar a pérdidas extendidas de áreas seguras y de alta calidad para el jaguar, la comunidad de mamíferos grandes y para todas las facetas de la diversidad de mamíferos. Estos declives sugieren un empobrecimiento biótico generalizado que incluye la pérdida de especies, historia evolutiva y funciones ecológicas en gran parte del Chaco. Ambas amenazas contribuyeron sustancialmente al declive de la biodiversidad, y su importancia relativa varió entre especies y facetas de la biodiversidad. Además, las áreas en las que ambas amenazas sinergizan aumentaron en el tiempo, probablemente exacerbando las pérdidas de biodiversidad. Para cada aspecto de la biodiversidad, identifiqué áreas prioritarias de hábitats seguros y de alta calidad, y focos de alto impacto de las amenazas, que podrían orientar estrategias de conservación complementarias más eficaces, tanto proactivas como reactivas. Esta tesis destaca la importancia de evaluar conjuntamente el impacto de múltiples amenazas a lo largo del tiempo para comprender mejor el impacto de los humanos en la biodiversidad e identificar vías eficaces para mitigarlas. / The main drivers of the current global biodiversity crisis are habitat destruction and overexploitation. Yet, we lack understanding of their individual and combined spatial impact on different aspects of biodiversity, and how they change over time. Because both threats are common, these knowledge gaps preclude building more effective conservation strategies. The overarching goal of this thesis was to understand how the impacts of habitat destruction and overexploitation on biodiversity change in space and over time. I assessed these geographies of threat at high spatial resolutions and over three decades for different biodiversity aspects: species, communities, and the taxonomic, phylogenetic, and functional facets of biodiversity. I focused on the 1.1 million km² Gran Chaco, the largest tropical dry forest globally, and a global deforestation hotspot. Results reveal that over 30 years, the spatial impacts of each threat expanded over larger areas than the area deforested. This resulted in widespread losses of high-quality and safe areas for the jaguar, the entire larger mammal community and for all facets of the mammalian diversity. Such declines suggest a generalized biotic impoverishment that includes the loss of species, evolutionary history, and ecological functions across much of the Chaco. Both threats contributed substantially to biodiversity declines, and their relative importance varied among species and biodiversity facets. Moreover, the areas where both threats synergize increased over time, likely exacerbating biodiversity losses. For each biodiversity aspect, I identified priority areas of safe and high-quality habitats, and hotspots of high threat impacts, which could guide more effective complementary proactive and reactive conservation strategies. This thesis highlights the importance of jointly assessing the impact of multiple threats over time to better understand the impact of humans on biodiversity and to identify effective ways to mitigate them.

Page generated in 0.0624 seconds