• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 570
  • 336
  • 39
  • 21
  • 15
  • 12
  • 11
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1191
  • 1191
  • 1191
  • 571
  • 556
  • 423
  • 157
  • 134
  • 129
  • 128
  • 120
  • 110
  • 94
  • 93
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Evaluation Of Performance And Optimum Valve Settings For Pressure Management Using Forecasted Daily Demand Curves By Artificial Neural Networks

Yildiz, Evren 01 August 2011 (has links) (PDF)
For the appropriate operation and correct short term planning, daily demand curve (DDC) of municipal water distribution networks should be forecasted beforehand. For that purpose, artificial neural networks (ANN) is used as a new method. The proposed approach employs already recorded DDCs extracted from the database of ASKI (Ankara Water Authority) SCADA center and related independent parameters such as temperature and relative humidity obtained from DMI (State Meteorological Institute). In this study, a computer model was developed in order to forecast hourly DDCs using Matlab and related modules. Parameters that affect the consumption of the water were determined as temperature, relative humidity, human behavior (weekend or workday) and season. Randomly selected days were taken into account for performance of the ANN model. Forecasted DDC values were compared with recorded data and consequently the model gives relatively satisfactory results, an average of 75% match according to R2 values for Ankara N8-3 network. Same architecture was applied for Antalya network give better results, average of 85%. For planning purposes / total volume and peak water consumption values for the selected recorded days, the day before recorded days, ANN forecasted days and seasonal average was compared and seasonal average gave relatively better results. Using the forecasted DDC, (i) performance analysis of the pressure zone and (ii) optimum valve setting evaluation for pressure management were realized. The results of the study may help water utilities for short term planning of a water distribution network, rehabilitation of elements, taking counter measures and setting the valve openings for minimizing leakage and optimizing customer conformity of the distribution network.
712

Optimal design of mesostructured materials under uncertainty

Patel, Jiten 24 August 2009 (has links)
The main objective of the topology optimization is to fulfill the objective function with the minimum amount of material. This reduces the overall cost of the structure and at the same time reduces the assembly, manufacturing and maintenance costs because of the reduced number of parts in the final structure. The concept of reliability analysis can be incorporated into the deterministic topology optimization method; this incorporated scheme is referred to as Reliability-based Topology Optimization (RBTO). In RBTO, the statistical nature of constraints and design problems are defined in the objective function and probabilistic constraint. The probabilistic constraint can specify the required reliability level of the system. In practical applications, however, finding global optimum in the presence of uncertainty is a difficult and computationally intensive task, since for every possible design a full stochastic analysis has to be performed for estimating various statistical parameters. Efficient methodologies are therefore required for the solution of the stochastic part and the optimization part of the design process. This research will explore a reliability-based synthesis method which estimates all the statistical parameters and finds the optimum while being less computationally intensive. The efficiency of the proposed method is achieved with the combination of topology optimization and stochastic approximation which utilizes a sampling technique such as Latin Hypercube Sampling (LHS) and surrogate modeling techniques such as Local Regression and Classification using Artificial Neural Networks (ANN). Local regression is comparatively less computationally intensive and produces good results in case of low probability of failures whereas Classification is particularly useful in cases where the reliability of failure has to be estimated with disjoint failure domains. Because classification using ANN is comparatively more computationally demanding than Local regression, classification is only used when local regression fails to give the desired level of goodness of fit. Nevertheless, classification is an indispensible tool in estimating the probability of failure when the failure domain is discontinuous. Representative examples will be demonstrated where the method is used to design customized meso-scale truss structures and a macro-scale hydrogen storage tank. The final deliverable from this research will be a less computationally intensive and robust RBTO procedure that can be used for design of truss structures with variable design parameters and force and boundary conditions.
713

Artificial Neural Network Approach For Characterization Of Acoustic Emission Sources From Complex Noisy Data

Bhat, Chandrashekhar 06 1900 (has links)
Safety and reliability are prime concerns in aircraft performance due to the involved costs and risk to lives. Despite the best efforts in design methodology, quality evaluation in production and structural integrity assessment in-service, attainment of one hundred percent safety through development and use of a suitable in-flight health monitoring system is still a farfetched goal. And, evolution of such a system requires, first, identification of an appropriate Technique and next its adoption to meet the challenges posed by newer materials (advanced composites), complex structures and the flight environment. In fact, a quick survey of the available Non-Destructive Evaluation (NDE) techniques suggests Acoustic Emission (AE) as the only available method. High merit in itself could be a weakness - Noise is the worst enemy of AE. So, while difficulties are posed due to the insufficient understanding of the basic behavior of composites, growth and interaction of defects and damage under a specified load condition, high in-flight noise further complicates the issue making the developmental task apparently formidable and challenging. Development of an in-flight monitoring system based on AE to function as an early warning system needs addressing three aspects, viz., the first, discrimination of AE signals from noise data, the second, extraction of required information from AE signals for identification of sources (source characterization) and quantification of its growth, and the third, automation of the entire process. And, a quick assessment of the aspects involved suggests that Artificial Neural Networks (ANN) are ideally suited for solving such a complex problem. A review of the available open literature while indicates a number of investigations carried out using noise elimination and source characterization methods such as frequency filtering and statistical pattern recognition but shows only sporadic attempts using ANN. This may probably be due to the complex nature of the problem involving investigation of a large number of influencing parameters, amount of effort and time to be invested, and facilities required and multi-disciplinary nature of the problem. Hence as stated in the foregoing, the need for such a study cannot be over emphasized. Thus, this thesis is an attempt addressing the issue of analysis and automation of complex sets of AE data such as AE signals mixed with in-flight noise thus forming the first step towards in-flight monitoring using AE. An ANN can in fact replace the traditional algorithmic approaches used in the past. ANN in general are model free estimators and derive their computational efficiency due to large connectivity, massive parallelism, non-linear analog response and learning capabilities. They are better suited than the conventional methods (statistical pattern recognition methods) due to their characteristics such as classification, pattern matching, learning, generalization, fault tolerance and distributed memory and their ability to process unstructured data sets which may be carrying incomplete information at times and hence chosen as the tool. Further, in the current context, the set of investigations undertaken were in the absence of sufficient a priori information and hence clustering of signals generated by AE sources through self-organizing maps is more appropriate. Thus, in the investigations carried out under the scope of this thesis, at first a hybrid network named "NAEDA" (Neural network for Acoustic Emission Data Analysis) using Kohonen self-organizing feature map (KSOM) and multi-layer perceptron (MLP) that learns on back propagation learning rule was specifically developed with innovative data processing techniques built into the network. However, for accurate pattern recognition, multi-layer back propagation NN needed to be trained with source and noise clusters as input data. Thus, in addition to optimizing the network architecture and training parameters, preprocessing of input data to the network and multi-class clustering and classification proved to be the corner stones in obtaining excellent identification accuracy. Next, in-flight noise environment of an aircraft was generated off line through carefully designed simulation experiments carried out in the laboratory (Ex: EMI, friction, fretting and other mechanical and hydraulic phenomena) based on the in-flight noise survey carried out by earlier investigators. From these experiments data was acquired and classified into their respective classes through MLP. Further, these noises were mixed together and clustered through KSOM and then classified into their respective clusters through MLP resulting in an accuracy of 95%- 100% Subsequently, to evaluate the utility of NAEDA for source classification and characterization, carbon fiber reinforced plastic (CFRP) specimens were subjected to spectrum loading simulating typical in-flight load and AE signals were acquired continuously up to a maximum of three designed lives and in some cases up to failure. Further, AE signals with similar characteristics were grouped into individual clusters through self-organizing map and labeled as belonging to appropriate failure modes, there by generating the class configuration. Then MLP was trained with this class information, which resulted in automatic identification and classification of failure modes with an accuracy of 95% - 100%. In addition, extraneous noise generated during the experiments was acquired and classified so as to evaluate the presence or absence of such data in the AE data acquired from the CFRP specimens. In the next stage, noise and signals were mixed together at random and were reclassified into their respective classes through supervised training of multi-layer back propagation NN. Initially only noise was discriminated from the AE signals from CFRP failure modes and subsequently both noise discrimination and failure mode identification and classification was carried out resulting in an accuracy of 95% - 100% in most of the cases. Further, extraneous signals mentioned above were classified which indicated the presence of such signals in the AE signals obtained from the CFRP specimen. Thus, having established the basis for noise identification and AE source classification and characterization, two specific examples were considered to evaluate the utility and efficiency of NAEDA. In the first, with the postulation that different basic failure modes in composites have unique AE signatures, the difference in damage generation and progression can be clearly characterized under different loading conditions. To examine this, static compression tests were conducted on a different set of CFRP specimens till failure with continuous AE monitoring and the resulting AE signals were classified through already trained NAEDA. The results obtained shows that the total number of signals obtained were very less when compared to fatigue tests and the specimens failed with hardly any damage growth. Further, NAEDA was able to discriminate the"noise and failure modes in CFRP specimen with the same degree of accuracy with which it has classified such signals obtained from fatigue tests. In the second example, with the same postulate of unique AE signatures for different failure modes, the differences in the complexion of the damage growth and progression should become clearly evident when one considers specimens with different lay up sequences. To examine this, the data was reclassified on the basis of differences in lay up sequences from specimens subjected to fatigue. The results obtained clearly confirmed the postulation. As can be seen from the summary of the work presented in the foregoing paragraphs, the investigations undertaken within the scope of this thesis involve elaborate experimentation, development of tools, acquisition of extensive data and analysis. Never the less, the results obtained were commensurate with the efforts and have been fruitful. Of the useful results that have been obtained, to state in specific, the first is, discrimination of simulated noise sources achieved with significant success but for some overlapping which is not of major concern as far as noises are concerned. Therefore they are grouped into required number of clusters so as to achieve better classification through supervised NN. This proved to be an innovative measure in supervised classification through back propagation NN. The second is the damage characterization in CFRP specimens, which involved imaginative data processing techniques that proved their worth in terms of optimization of various training parameters and resulted in accurate identification through clustering. Labeling of clusters is made possible by marking each signal starting from clustering to final classification through supervised neural network and is achieved through phenomenological correlation combined with ultrasonic imaging. Most rewarding of all is the identification of failure modes (AE signals) mixed in noise into their respective classes. This is a direct consequence of innovative data processing, multi-class clustering and flexibility of grouping various noise signals into suitable number of clusters. Thus, the results obtained and presented in this thesis on NN approach to AE signal analysis clearly establishes the fact that methods and procedures developed can automate detection and identification of failure modes in CFRP composites under hostile environment, which could lead to the development of an in-flight monitoring system.
714

Künstliche neuronale Netze zur Beschreibung der hydrodynamischen Prozesse für den Hochwasserfall unter Berücksichtigung der Niederschlags-Abfluß-Prozesse im Zwischeneinzugsgebiet

Peters, Ronny 22 July 2008 (has links) (PDF)
Aus den Mängeln bisher verwendeter Modelle zur Abbildung des Wellenablaufes zu Prognosezwecken im Hochwasserfall wird in dieser Arbeit eine Methodik entwickelt, die die Schnelligkeit und Robustheit künstlicher neuronaler Netze mit der Zuverlässigkeit hydrodynamisch-numerischer Modellierung verbindet. Ein eindimensionales hydrodynamisches Modell beinhaltet die genaue Kenntnis der Geometrie des Flußlaufes und der Vorländer und berücksichtigt die physikalischen Prozesse des Wellenablaufes. Mit diesem deterministischen Modell ist eine Grundlage für umfangreiche Szenarienrechnungen zur Erstellung einer Datenbasis geschaffen, die die weite Spanne theoretisch möglicher Hochwasserereignisse abdeckt. Mit dieser Datenbasis können dann künstliche neuronale Netze trainiert werden, die auch im Bereich extremer Hochwasserereignisse zuverlässige Prognosen liefern. In dieser Arbeit werden mit Multilayer-Feedforward-Netzen und selbstorganisierenden Merkmalskarten zwei Netztypen als Vertreter überwacht und unüberwacht lernender neuronaler Netze auf ihre diesbezügliche Eignung untersucht und beurteilt. Desweiteren wurde die Methodik auf die Einbeziehung von Merkmalen für die Niederschlags-Abfluß-Prozesse im unbeobachteten Zwischengebiet zur Berücksichtigung lateraler Zuflüsse entlang der modellierten Fließstrecken erweitert. Die Datenbasis wurde hierfür mit einem Niederschlags-Abfluß-Modell erstellt. Ein Hauptschwerpunkt liegt in der Überführung der Eingangsdaten in charakteristische Merkmale zur Abbildung der Zielgrößen, in diesem Falle des Durchflusses und Wasserstandes am Zielpegel. So dienen die deterministischen Modelle nicht nur zur Erstellung einer verläßlichen Datenbasis für das Training der Netze, sondern ermöglichen – sowohl für die Niederschlags-Abfluß-Prozesse, als auch für die hydrodynamischen Prozesse – Analysen betreffs der Sensitivität der Modellergebnisse infolge von Änderungen der Inputdaten. Mit Hilfe dieser Analysen werden wichtige Informationen zur Findung der relevanten Merkmale erlangt. Ein Schlüssel für die erfolgreiche Eingliederung der Niederschlags-Abfluß-Prozesse in das Prognosenetz ist die Einführung eines einzigen Zustandsmerkmals, welches die gesamte meteorologische Vorgeschichte des Ereignisses zur Charakterisierung des Gebietszustandes vereinigt. Die entwickelte Methodik wurde anhand des Einzugsgebietes der Freiberger Mulde erfolgreich getestet.
715

Αναγνώριση προτύπων από εικόνες

Κωτσιόπουλος, Χάρης 06 November 2014 (has links)
Η παρούσα διπλωματική εργασία ασχολείται με ένα σημαντικό ερευνητικό πρόβλημα του πεδίου της υπολογιστικής όρασης το οποίο είναι η Αναγνώριση Προτύπων (pattern recognition) μέσα από εικόνες. Πιο συγκεκριμένα, θα μελετήσουμε τον σχεδιασμό και την υλοποίηση ενός συστήματος αναγνώρισης αντικειμένων από ψηφιακές εικόνες καθώς και την ταξινόμησή τους σε κατηγορίες (image classification). / This thesis deals with an important research problem field of computer vision which is pattern recognition through images. In particular, we will study the design and implementation of a system to recognize objects from digital images and their classification in categories (image classification).
716

Computational intelligence methods on biomedical signal analysis and data mining in medical records

Vladutu, Liviu-Mihai 05 May 2009 (has links)
This thesis is centered around the development and application of computationally effective solutions based on artificial neural networks (ANN) for biomedical signal analysis and data mining in medical records. The ultimate goal of this work in the field of Biomedical Engineering is to provide the clinician with the best possible information needed to make an accurate diagnosis (in our case of myocardial ischemia) and to propose advanced mathematical models for recovering the complex dependencies between the variables of a physical process from a set of perturbed observations. After describing some of the types of ANN mainly used in this work, we start designing a model for pattern classification, by constructing several local models, for neighborhoods of the state space. For this task, we use the novel k-windows clustering algorithm, to automatically detect neighborhoods in the state space. This algorithm, with a slight modification (unsupervised k-windows algorithm) has the ability to endogenously determine the number of clusters present in the data set during the clustering process. We used this method together with the other 2 mentioned below (NetSOM and sNet-SOM) for the problem of ischemia detection. Next, we propose the utilization of a statistically extracted distance measure in the context of Generalized Radial Basis Function (GRBF) networks. The main properties of the GRBF networks are retained in a new metric space, called Statistical Distance Metric (SDM). The regularization potential of these networks can be realized with this type of distance. Furthermore, the recent engineering of neural networks offers effective solutions for learning smooth functionals that lie on high dimensional spaces.We tested this solution with an application from bioinformatics, one example from data mining of commercial databases and finally with some examples using medical databases from a Machine Learning Repository. We continue by establishing the network self-organizing map (NetSOM) model, which attempts to generalize the regularization and ordering potential of the basic SOM from the space of vectors to the space of approximating functions. It becomes a device for the ordering of local experts (i.e. independent neural networks) over its lattice of neurons and for their selection and coordination. Finally, an alternative to NetSOM is proposed, which uses unsupervised ordering based on Self-organizing maps (SOM) for the "simple" regions and for the "difficult" ones a two-stage learning process. There are two differences resulted from the comparison with the previous model (NetSOM), one is that we replaced a fixed-size of the SOM with a dinamically expanded map and second, the supervised learning was based this time on Radial Basis Functions (RBF) Networks and Support Vector Machines (SVM). There are two fields in which this tool (called sNet-SOM) was used, namely: ischemia detection and Data Mining. / Η παρούσα διδακτορική διατριβή είναι επικεντρωμένη γύρω από την ανάπτυξη και εφαρμογή, με χαμηλές υπολογιστικές απαιτήσεις, βασισμένες σε Τεχνητά Νευρωνικά Δίκτυα, για την Ανάλυση Βιοϊατρικών σημάτων και Data Mining σε Ιατρικά Δεδομένα. Απώτερος σκοπός της παρούσης διατριβής στον τομέα της Βιοϊατρικής Τεχνολογίας είναι να παρέχει στους ιατρούς με την καλύτερη δυνατή πληροφόρηση για να κάνουν μια ακριβή διάγνωση (στην περίπτωση του ισχαιμικού μυοκαρδίου) και να προτείνει αναπτυγμένα μαθηματικά μοντέλα για να ανακάμψει πολύπλοκες εξαρτήσεις μεταξύ τον μεταβλητών μιας φυσικής διεργασίας από ένα σύνολο διαφορετικών παρατηρήσεων. Μετά την περιγραφή μερικών από τους βασικούς τύπους τεχνητών Νευρωνικών Δικτύων που χρησιμοποιούνται στην παρούσα διατριβή, εμείς αρχίσαμε να σχεδιάζουμε ένα μοντέλο για ταξινόμηση προτύπων κατασκευάζοντας πολλά τοπικά μοντέλα γειτονικά με τον παρόντα χώρο. Για αυτό το σκοπό εμείς χρησιμοποιούμε το αλγόριθμο για clustering k-windows για να ανιχνεύει αυτόματα γειτονιές στον παρόντα χώρο. Αυτός ο αλγόριθμος με μια ελαφριά τροποποίηση έχει την ικανότητα να καθορίζει ενδογενώς την παρουσία του αριθμού τον clusters στο σύνολο τον δεδομένων κατά την διάρκεια της διαδικασίας του clustering. Όταν η διαδικασία του clustering ολοκληρώνεται ένα εκπαιδευμένο Εμπροσθοτροφοδοτούμενο Νευρωνικό Δίκτυο δρα ως ο τοπικός προβλέπτης για κάθε cluster. Εν συνεχεία, προτείνουμε τη χρήση εξαγόμενης στατιστικής μετρητικής απόστασης, μέσα στο γενικότερο πλαίσιο των δικτύων ( GRBF). Οι κύριες λειτουργίες των GRBF (Generalized Radial Basis Functions) δικτύων διατηρούνται στο καινούργιο μετρητικό χώρο. Η δυναμική κανονικοποίηση αυτών των δικτύων μπορεί να πραγματοποιηθεί με αυτό τον τύπο αποστάσεων. Επιπλέον η πρόσφατη τεχνολογία των ΝΝ (Neural Networks) προσφέρει αποτελεσματικές λύσεις για τη μάθηση ομαλών συναρτήσεων που βρίσκεται σε υψηλούς διαστατικούς χώρους. Δοκιμάσαμε αυτή τη λύση σε εφαρμογή βιοπληροφορικής, μία από εμπορικές βάσεις δεδομένων και τέλος με μερικά παραδείγματα χρησιμοποιώντας βάσεις δεδομένων από το UCI (University of California at Irvine) από το ιατρικό πεδίο. Συνεχίζοντας, καθιδρύουμε το δίκτυο NetSOM (network Self-Οrganizing Map), που προσπαθεί να γενικεύσει (generalize) την κανονικοποίηση (regularization) και να δώσει δυναμικές εντολές (ordering) του βασικού SOM από το διανυσματικό χώρο στο χώρο των προσεγγιστικών συναρτήσεων. Αποτελεί μια εντολοδόχο διαδικασία για τους τοπικούς ειδικούς πάνω από το πλέγμα των νευρώνων και για την επιλογή και το συντονισμό τους. Τέλος, αναλύεται μια εναλλακτική λύση του NetSOM, που χρησιμοποιεί μη εκπαιδευμένες εντολές βασισμένες στο SOMs για τις “απλές ” περιοχές και για τις “δύσκολες ” μια διαδικασία μάθησης 2-επιπέδων. Υπάρχουν 2 διαφορές στα αποτελέσματα από την σύγκριση με το προηγούμενο μοντέλο (NetSOM), η πρώτη είναι ότι αντικαταστήσαμε (we replaced) a fixed-size των SOM με ένα πιο δυναμικό ταίριασμα (mapping) και η δεύτερη, η εκπαιδευόμενη εκμάθηση βασίστηκε αυτή τη φορά στην RBF και στις μηχανές υποστήριξης διανυσμάτων (SVM). Αυτό το εργαλείο χρησιμοποιήθηκε στην αναγνώριση των ισχαιμιών και εξόρυξη δεδομένων από βάσεις δεδομένων.
717

Network on chip based multiprocessor system on chip for wireless software defined cognitive radio

Taj, Muhammad Imran 12 September 2011 (has links) (PDF)
Software Defined Radio (SDR) and Cognitive Radio (CR) are entering mainstream. These high performance and high adaptability requiring devices with agile frequency operations hold promise to :1. address the inconsistency between hardware and software advancements, 2. real time mode switching from one radio configuration to another and3. efficient spectrum management in under-utilized spectrum bands. Framed within this statement, in this thesis we have implemented a SDR waveform on 16 Processing Element (PE) Network on chip (NoC) based general purpose Multiprocessors System on chip (MPSoC), with access to four external DDR2 memory banks, which is implemented on a single chip Xilinx Virtex-4 FPGA. We shifted short term development of a waveform into software domain by designing an efficient parallelization and synchronization strategy for each waveform component, individually. We enhance our designed waveform functionality by proposing and implementing three Artificial Neural Networks Schemes : Self Organizing Maps, Linear Vector Quantization and Multi-Layer Perceptrons as effective techniques for reconfiguring CR Transceiver after recognizing the specific standard based on input parameters, pertaining to different layers, extracted from the signal. Our proposed adaptive solution switches to appropriate Artificial Neural Network, based on the features of input signal sensed. We designed an efficient synchronization and parallelization strategy to implement the Artificial Neural Networks based CR Transceiver Algorithms on the aforementioned MPSoC chip. The speed up we obtained for our SDR waveform and CR Transceiver algorithms demonstrated that the general purpose MPSoC devices are the most efficient answer to the acquisition challenge for major organizations that invest or plan to invest in SDR and CR based devices, thereby allowing us to avoid expensive hardware accelerators. We address the case of a complex signal composed of many modulated carriers by dividing the PEs in individual groups, thus received signal with more than one Standard is processed efficiently. We add further functionality in our designed Multi-standard CR Transceiver possessing SDR Waveform by proposing a new approach for radio spectrum management, perhaps the most important aspect of CR. We make our designed waveform Spectrum efficient by modelling the primary user signal Radio Frequency features as a multivariate time series, which is then given as input to Elman Recurrent Neural Network that predicts the evolution of Radio Frequency Time Series to decide if the secondary user can exploit the Spectrum band. We exploit the inherent cyclostationary in primary signals for Non-linear Autoregressive Exogenous Time Series Modeling of Radio Frequency features, as predicting one RF feature needs the previous knowledge of other relevant RF features. We observe a similar trend between predicted and actual values. Ensemble, our designed Spectrum Efficient SDR waveform with a Universal Multi-standard Transceiver answers the SDR and CR performance requirements under resource constraints by efficient algorithm design and implementation using lateral thinking that seeks a greater cross-domain interaction
718

The functionality of spatial and time domain artificial neural models

Capanni, Niccolo Francesco January 2006 (has links)
This thesis investigates the functionality of the units used in connectionist Artificial Intelligence systems. Artificial Neural Networks form the foundation of the research and their units, Artificial Neurons, are first compared with alternative models. This initial work is mainly in the spatial-domain and introduces a new neural model, termed a Taylor Series neuron. This is designed to be flexible enough to assume most mathematical functions. The unit is based on Power Series theory and a specifically implemented Taylor Series neuron is demonstrated. These neurons are of particular usefulness in evolutionary networks as they allow the complexity to increase without adding units. Training is achieved via various traditiona and derived methods based on the Delta Rule, Backpropagation, Genetic Algorithms and associated evolutionary techniques. This new neural unit has been presented as a controllable and more highly functional alternative to previous models. The work on the Taylor Series neuron moved into time-domain behaviour and through the investigation of neural oscillators led to an examination of single-celled intelligence from which the later work developed. Connectionist approaches to Artificial Intelligence are almost always based on Artificial Neural Networks. However, another route towards Parallel Distributed Processing was introduced. This was inspired by the intelligence displayed by single-celled creatures called Protoctists (Protists). A new system based on networks of interacting proteins was introduced. These networks were tested in pattern-recognition and control tasks in the time-domain and proved more flexible than most neuron models. They were trained using a Genetic Algorithm and a derived Backpropagation Algorithm. Termed "Artificial BioChemical Networks" (ABN) they have been presented as an alternative approach to connectionist systems.
719

A Recommended Neural Trip Distributon Model

Tapkin, Serkan 01 January 2004 (has links) (PDF)
In this dissertation, it is aimed to develop an approach for the trip distribution element which is one of the important phases of four-step travel demand modelling. The trip distribution problem using back-propagation artificial neural networks has been researched in a limited number of studies and, in a critically evaluated study it has been concluded that the artificial neural networks underperform when compared to the traditional models. The underperformance of back-propagation artificial neural networks appears to be due to the thresholding the linearly combined inputs from the input layer in the hidden layer as well as thresholding the linearly combined outputs from the hidden layer in the output layer. In the proposed neural trip distribution model, it is attempted not to threshold the linearly combined outputs from the hidden layer in the output layer. Thus, in this approach, linearly combined iv inputs are activated in the hidden layer as in most neural networks and the neuron in the output layer is used as a summation unit in contrast to other neural networks. When this developed neural trip distribution model is compared with various approaches as modular, gravity and back-propagation neural models, it has been found that reliable trip distribution predictions are obtained.
720

Development of Prediction Systems Using Artificial Neural Networks for Intelligent Spinning Machines / Entwicklung von Vorhersagesystemen für Intelligente Spinnmaschinen auf Basis Künstlicher Neuronaler Netze

Farooq, Assad 10 June 2010 (has links) (PDF)
The optimization of the spinning process and adjustment of the machine settings involve “Trial and Error” method resulting in the wasting of production time and material. This situation becomes worse in the spinning mills where the speed and material changes are frequent. This research includes the use of artificial neural networks to provide the thinking ability to the spinning machines to improve the yarn spinning process. Draw frame, being the central part of the spinning preparation chain and last machine to rectify the variations in the fed slivers is the main focus of the research work. Artificial neural network have been applied to the leveling action point at auto-leveler draw frame and search range of leveling action point has been considerably reduced. Moreover, the sliver and yarn characteristics have been predicted on the basis of draw frame settings using the artificial neural networks. The results of present research work can help the spinning industry in the direction of limiting of “Trial and Error” method, reduction of waste and cutting down the time losses associated with the optimizing of machines. As a vision for the future research work the concept of intelligent spinning machines has also been proposed. / Die Optimierung des Spinnprozesses und die Maschineneinstellung erfolgen häufig mittels „Trial und Error“-Methoden, die mit einem hohen Aufwand an Produktionszeit und Material einhergehen. Diese Situation ist für Spinnereien, in denen häufige Wechsel des eingesetzten Materials oder der Produktionsgeschwindigkeit nötig sind, besonders ungünstig. Die vorliegende Arbeit zeigt das Potenzial Neuronaler Netze, um die Spinnmaschine zum „Denken“ zu befähigen und damit die Garnherstellung effektiver zu machen. Die Strecke ist der zentrale Teil der Spinnereivorbereitungskette und bietet die letzte Möglichkeit, Inhomogenitäten im Faserband zu beseitigen. Der Fokus der Arbeit richtet sich deshalb auf diese Maschine. Künstlich Neuronale Netze werden an der Strecke zur Bestimmung des Regeleinsatzpunktes genutzt, womit eine beträchtliche Reduzierung des Aufwands für die korrekte Festlegung des Regeleinsatzpunkts erreicht wird. Darüber hinaus können mit Hilfe der Neuronalen Netze die Band- und Garneigenschaften auf Basis der Streckeneinstellungen vorausbestimmt werden. Die Resultate der vorliegenden Arbeit machen „Trial und Error“-Methoden überflüssig, reduzieren den Ausschuss und verringern die Zeitverluste bei der Maschinenoptimierung. Als Zukunftsvision wird eine Konzeption für intelligente Spinnmaschinen vorgestellt.

Page generated in 0.102 seconds