• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analisando flutuações de um mercado financeiro artificial baseado na expectativa de riqueza dos agentes / Analyzing fluctuations of an artificial financial market based on expected wealth of agents

Garcia, Luiz Antonio Marques January 2008 (has links)
Esta dissertação apresenta uma proposta de modelo de mercado financeiro artificial que reproduz séries de retornos com propriedades estatísticas universais semelhantes às observadas em séries reais. Dentre as propriedades, também chamadas de fatos estilizados na Economia, as séries artificiais de retornos exibiram ausência de autocorrelação para os retornos simples, leis de potência para autocorrelação para os retornos absolutos e quadráticos, excesso de curtose nas distribuições de retorno, gaussianidade agregacional e volatilidade clusterizada. Cabe salientar, que não há na literatura um outro mercado artificial que reproduziu tantos fatos estilizados conjuntamente. O modelo dinâmico e síncrono é baseado em agentes que transacionam ativos com risco como ações de empresa através de ordens de compra e venda enviadas ao mercado a cada período de tempo. O preço de mercado das ações é calculado da média ponderada pelo volume das ordens negociadas entre os agentes. O objetivo dos agentes é maximizar sua riqueza e, para isso, seguem ou a estratégia fundamentalista utilizando os dividendos para calcular os preços das ações ou a estratégia técnica baseada em análise de séries temporais. A principal contribuição da modelagem foi acrescentar às estratégias um fator de aprendizado em que o agente considera sua habilidade individual passada de previsão de riqueza esperada para calcular os retornos futuros. Este trabalho também mediu o coeficiente de Gini para descobrir como algumas variáveis de mercado afetavam a distribuição de riqueza dos agentes e, além disso, estudou quais valores de dividendo tornavam uma estratégia mais eficiente que outra. Por fim, incorporaram-se características evolutivas aos agentes possibilitandoos a trocar de estratégias no decorrer da simulação e, com isso, os resultados mostraram aumento da riqueza dos agentes. / This work presents a new artificial stock market model for reproducing price time series of assets in such market model. For a suitable validation of the model, we verified several statistical and universal properties (called stylized facts in the Economics Literature) and similar results are obtained with data extracted from real stock markets. We investigate several properties including absence of autocorrelation for simple returns and the power behavior law of autocorrelation for absolute and quadratic returns, excess of kurtosis, aggregational gaussianity, and clustered volatility. It is important to mention that no other similar artificial model has investigated so many statistical universalities. Our synchronous model is based on agents negotiating risk assets through purchase and sale orders. These orders are stored in books for each simulation step. The weighted average volume of all orders negotiated by the agents determines the price of an asset. For the sake of simplicity, our model considers two kinds of strategies: 1. Fundamentalist - where one uses the dividends to calculate the expected return of an asset; 2. Trend predictor - where one obtains the expected returns directly from an analysis of the price time series. One of the main contributions of our model was to add a term that works as the expected wealth of an agent. This is considered an important psychological factor in the decision making process. In addition, we consider an income inequality index to analyze the wealth distribution of the agents: the Gini-coefficient, which predicts an inequality interval of [0 (society completely fair),1 (society completely unfair)]. We also study the influence of the dividends and risk free assets parameters on this coefficient. Finally, some evolutionary features of the model are analyzed. Our results show an increase in agent’s wealth when strategies are updated according to the following criteria: if expected wealth does not reach a given threshold, the agent changes his strategy from Fundamentalist to Trend Predictor or vice-versa. If the expected wealth reaches the specified threshold, the agent keeps his initial strategy. We tested different threshold values in this analysis and the conclusion was confirmed in all cases studied.
2

Analisando flutuações de um mercado financeiro artificial baseado na expectativa de riqueza dos agentes / Analyzing fluctuations of an artificial financial market based on expected wealth of agents

Garcia, Luiz Antonio Marques January 2008 (has links)
Esta dissertação apresenta uma proposta de modelo de mercado financeiro artificial que reproduz séries de retornos com propriedades estatísticas universais semelhantes às observadas em séries reais. Dentre as propriedades, também chamadas de fatos estilizados na Economia, as séries artificiais de retornos exibiram ausência de autocorrelação para os retornos simples, leis de potência para autocorrelação para os retornos absolutos e quadráticos, excesso de curtose nas distribuições de retorno, gaussianidade agregacional e volatilidade clusterizada. Cabe salientar, que não há na literatura um outro mercado artificial que reproduziu tantos fatos estilizados conjuntamente. O modelo dinâmico e síncrono é baseado em agentes que transacionam ativos com risco como ações de empresa através de ordens de compra e venda enviadas ao mercado a cada período de tempo. O preço de mercado das ações é calculado da média ponderada pelo volume das ordens negociadas entre os agentes. O objetivo dos agentes é maximizar sua riqueza e, para isso, seguem ou a estratégia fundamentalista utilizando os dividendos para calcular os preços das ações ou a estratégia técnica baseada em análise de séries temporais. A principal contribuição da modelagem foi acrescentar às estratégias um fator de aprendizado em que o agente considera sua habilidade individual passada de previsão de riqueza esperada para calcular os retornos futuros. Este trabalho também mediu o coeficiente de Gini para descobrir como algumas variáveis de mercado afetavam a distribuição de riqueza dos agentes e, além disso, estudou quais valores de dividendo tornavam uma estratégia mais eficiente que outra. Por fim, incorporaram-se características evolutivas aos agentes possibilitandoos a trocar de estratégias no decorrer da simulação e, com isso, os resultados mostraram aumento da riqueza dos agentes. / This work presents a new artificial stock market model for reproducing price time series of assets in such market model. For a suitable validation of the model, we verified several statistical and universal properties (called stylized facts in the Economics Literature) and similar results are obtained with data extracted from real stock markets. We investigate several properties including absence of autocorrelation for simple returns and the power behavior law of autocorrelation for absolute and quadratic returns, excess of kurtosis, aggregational gaussianity, and clustered volatility. It is important to mention that no other similar artificial model has investigated so many statistical universalities. Our synchronous model is based on agents negotiating risk assets through purchase and sale orders. These orders are stored in books for each simulation step. The weighted average volume of all orders negotiated by the agents determines the price of an asset. For the sake of simplicity, our model considers two kinds of strategies: 1. Fundamentalist - where one uses the dividends to calculate the expected return of an asset; 2. Trend predictor - where one obtains the expected returns directly from an analysis of the price time series. One of the main contributions of our model was to add a term that works as the expected wealth of an agent. This is considered an important psychological factor in the decision making process. In addition, we consider an income inequality index to analyze the wealth distribution of the agents: the Gini-coefficient, which predicts an inequality interval of [0 (society completely fair),1 (society completely unfair)]. We also study the influence of the dividends and risk free assets parameters on this coefficient. Finally, some evolutionary features of the model are analyzed. Our results show an increase in agent’s wealth when strategies are updated according to the following criteria: if expected wealth does not reach a given threshold, the agent changes his strategy from Fundamentalist to Trend Predictor or vice-versa. If the expected wealth reaches the specified threshold, the agent keeps his initial strategy. We tested different threshold values in this analysis and the conclusion was confirmed in all cases studied.
3

Analisando flutuações de um mercado financeiro artificial baseado na expectativa de riqueza dos agentes / Analyzing fluctuations of an artificial financial market based on expected wealth of agents

Garcia, Luiz Antonio Marques January 2008 (has links)
Esta dissertação apresenta uma proposta de modelo de mercado financeiro artificial que reproduz séries de retornos com propriedades estatísticas universais semelhantes às observadas em séries reais. Dentre as propriedades, também chamadas de fatos estilizados na Economia, as séries artificiais de retornos exibiram ausência de autocorrelação para os retornos simples, leis de potência para autocorrelação para os retornos absolutos e quadráticos, excesso de curtose nas distribuições de retorno, gaussianidade agregacional e volatilidade clusterizada. Cabe salientar, que não há na literatura um outro mercado artificial que reproduziu tantos fatos estilizados conjuntamente. O modelo dinâmico e síncrono é baseado em agentes que transacionam ativos com risco como ações de empresa através de ordens de compra e venda enviadas ao mercado a cada período de tempo. O preço de mercado das ações é calculado da média ponderada pelo volume das ordens negociadas entre os agentes. O objetivo dos agentes é maximizar sua riqueza e, para isso, seguem ou a estratégia fundamentalista utilizando os dividendos para calcular os preços das ações ou a estratégia técnica baseada em análise de séries temporais. A principal contribuição da modelagem foi acrescentar às estratégias um fator de aprendizado em que o agente considera sua habilidade individual passada de previsão de riqueza esperada para calcular os retornos futuros. Este trabalho também mediu o coeficiente de Gini para descobrir como algumas variáveis de mercado afetavam a distribuição de riqueza dos agentes e, além disso, estudou quais valores de dividendo tornavam uma estratégia mais eficiente que outra. Por fim, incorporaram-se características evolutivas aos agentes possibilitandoos a trocar de estratégias no decorrer da simulação e, com isso, os resultados mostraram aumento da riqueza dos agentes. / This work presents a new artificial stock market model for reproducing price time series of assets in such market model. For a suitable validation of the model, we verified several statistical and universal properties (called stylized facts in the Economics Literature) and similar results are obtained with data extracted from real stock markets. We investigate several properties including absence of autocorrelation for simple returns and the power behavior law of autocorrelation for absolute and quadratic returns, excess of kurtosis, aggregational gaussianity, and clustered volatility. It is important to mention that no other similar artificial model has investigated so many statistical universalities. Our synchronous model is based on agents negotiating risk assets through purchase and sale orders. These orders are stored in books for each simulation step. The weighted average volume of all orders negotiated by the agents determines the price of an asset. For the sake of simplicity, our model considers two kinds of strategies: 1. Fundamentalist - where one uses the dividends to calculate the expected return of an asset; 2. Trend predictor - where one obtains the expected returns directly from an analysis of the price time series. One of the main contributions of our model was to add a term that works as the expected wealth of an agent. This is considered an important psychological factor in the decision making process. In addition, we consider an income inequality index to analyze the wealth distribution of the agents: the Gini-coefficient, which predicts an inequality interval of [0 (society completely fair),1 (society completely unfair)]. We also study the influence of the dividends and risk free assets parameters on this coefficient. Finally, some evolutionary features of the model are analyzed. Our results show an increase in agent’s wealth when strategies are updated according to the following criteria: if expected wealth does not reach a given threshold, the agent changes his strategy from Fundamentalist to Trend Predictor or vice-versa. If the expected wealth reaches the specified threshold, the agent keeps his initial strategy. We tested different threshold values in this analysis and the conclusion was confirmed in all cases studied.
4

Simulação multi agente em mercados financeiros artificiais utilizando algoritmos genéticos

Seita, Marcelo Ruiz 29 July 2014 (has links)
Submitted by Marcelo Seita (mrseita@gmail.com) on 2014-08-20T16:21:47Z No. of bitstreams: 1 Versão_4.3.pdf: 1745536 bytes, checksum: ae0ce9636f907bd1139ff730270fa1ce (MD5) / Approved for entry into archive by JOANA MARTORINI (joana.martorini@fgv.br) on 2014-08-20T16:29:41Z (GMT) No. of bitstreams: 1 Versão_4.3.pdf: 1745536 bytes, checksum: ae0ce9636f907bd1139ff730270fa1ce (MD5) / Made available in DSpace on 2014-08-20T19:02:48Z (GMT). No. of bitstreams: 1 Versão_4.3.pdf: 1745536 bytes, checksum: ae0ce9636f907bd1139ff730270fa1ce (MD5) Previous issue date: 2014-07-29 / Aiming to establish a methodology capable of segregate market’s moments and identifying investors's characteristics acting on a given financial market, this study employs simulations created by an Agent-based Artificial Financial Market, using a Genetic Algorithm to adjust such simulations to the real observed historic data. For this purpose, a Bovespa's index future contracts application was developed. This methodology could easily be extended to other financial markets by simply changing the model's parameters. Over the foundations established by Toriumi et al. (2011), significant contributions were achieved, promoting knowledge enhancements on the chosen target market, as well as on Artificial Financial Market modelling techniques, and also on the application of Genetic Algorithm into financial markets, resulting on experiments and analysis that suggest the efficacy of the methodology herein proposed. / Com o objetivo de estabelecer uma metodologia capaz segregar momentos de mercado e de identificar as características predominantes dos investidores atuantes em um determinado mercado financeiro, este trabalho emprega simulações geradas em um Mercado Financeiro Artificial baseado em agentes, utilizando um Algoritmo Genético para ajustar tais simulações ao histórico real observado. Para tanto, uma aplicação foi desenvolvida utilizando-se o mercado de contratos futuros de índice Bovespa. Esta metodologia poderia facilmente ser estendida a outros mercados financeiros através da simples parametrização do modelo. Sobre as bases estabelecidas por Toriumi et al. (2011), contribuições significativas foram atingidas, promovendo acréscimo de conhecimento acerca tanto do mercado alvo escolhido, como das técnicas de modelagem em Mercados Financeiros Artificiais e também da aplicação de Algoritmos Genéticos a mercados financeiros, resultando em experimentos e análises que sugerem a eficácia do método ora proposto.
5

Utilização de mercados artificiais com formadores de mercado para análise de estratégias

Odriozola, Fernando Reis 24 August 2015 (has links)
Submitted by Fernando Reis de Odriozola (odriozola.fernando@gmail.com) on 2015-09-21T04:39:27Z No. of bitstreams: 1 Dissertação - Fernando R Odriozola.pdf: 881210 bytes, checksum: 13c5e46a6da326c976883920a7af7eb6 (MD5) / Approved for entry into archive by Renata de Souza Nascimento (renata.souza@fgv.br) on 2015-09-21T23:06:54Z (GMT) No. of bitstreams: 1 Dissertação - Fernando R Odriozola.pdf: 881210 bytes, checksum: 13c5e46a6da326c976883920a7af7eb6 (MD5) / Made available in DSpace on 2015-09-22T13:32:47Z (GMT). No. of bitstreams: 1 Dissertação - Fernando R Odriozola.pdf: 881210 bytes, checksum: 13c5e46a6da326c976883920a7af7eb6 (MD5) Previous issue date: 2015-08-24 / For complex systems, traditional analytical-approach with differential equations sometimes results in intractable solutions. An alternative approach could be through Agents-Based Models as a complementary tool witch systems can be modeled from their constituent parts and interactions. Financial Markets are good examples of complex system and thus Agent-Based Models would be a correct approach. This paper implements an Artificial Financial Market composed by market makers, information broadcasters and a set of heterogeneous agents who trade assets through a Continuous Double Auction mechanism. Several aspects of the simulation were investigated to consolidate their understanding and thus contribute to the design of models, where we can highlight, among others: distinctions between Discrete and Continuous Double Auction; implications of Market Maker spread settings; Budget Constraints effects on agents and Analysis of pricing formation in offer submissions. Thinking about the adherence of the model to the Brazilian market reality, a method named Inverse Simulation is used to calibrate the input parameters in a way that the output matches historical market price series. / Na modelagem de sistemas complexos, abordagens analíticas tradicionais com equações diferenciais muitas vezes resultam em soluções intratáveis. Para contornar este problema, Modelos Baseados em Agentes surgem como uma ferramenta complementar, onde o sistema é modelado a partir de suas entidades constituintes e interações. Mercados Financeiros são exemplos de sistemas complexos, e como tais, o uso de modelos baseados em agentes é aplicável. Este trabalho implementa um Mercado Financeiro Artificial composto por formadores de mercado, difusores de informações e um conjunto de agentes heterogêneos que negociam um ativo através de um mecanismo de Leilão Duplo Contínuo. Diversos aspectos da simulação são investigados para consolidar sua compreensão e assim contribuir com a concepção de modelos, onde podemos destacar entre outros: Diferenças do Leilão Duplo Contínuo contra o Discreto; Implicações da variação do spread praticado pelo Formador de Mercado; Efeito de Restrições Orçamentárias sobre os agentes e Análise da formação de preços na emissão de ofertas. Pensando na aderência do modelo com a realidade do mercado brasileiro, uma técnica auxiliar chamada Simulação Inversa, é utilizada para calibrar os parâmetros de entrada, de forma que trajetórias de preços simulados resultantes sejam próximas à séries de preços históricos observadas no mercado.

Page generated in 0.1112 seconds