• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 1
  • Tagged with
  • 23
  • 23
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design and Characterization of Twisted and Coiled Polymers and Their Applications as Soft Actuators

Martin, Jacob 06 February 2023 (has links)
Current progress in mobility assistive devices revolves around traditional actuation methods including electric motors, hydraulics, and pneumatic cylinders to provide assistive joint torques to the user. While these mechanisms are effective at providing the torques needed, they are often bulky, heavy, and suffer from poor alignment with the joints of the user. These drawbacks have created a need for novel technologies that can provide a more compact and compliant form of actuation. Twisted and coiled polymers, under the thermomechanical class of smart material actuators, have emerged as a strong candidate for use as soft actuators in assistive devices due to their low cost, commercial availability, high stroke capacity, and power density. Progress to their development is currently limited by lack of proper standardization in the fabrication process, along with incomplete characterization of its quasi-static mechanical and thermal behaviours and how the performance is influenced by various design considerations. This thesis defined a fabrication process of twisted coiled polymer actuators and evaluated the trends between design considerations and their impacts on the final actuator performance. In this work, a fabrication rig was developed to manufacture consistent and repeatable actuators, while enabling the control of various identified design parameters. Subsequently, a comprehensive experimental evaluation was accomplished which resulted in a better understanding of the relationships between these parameters and the actuator performance including its tensile stroke, force generation, and variable stiffness properties. The results provided a foundation for designers to consider which variables should be controlled during both actuator fabrication and operation, in order to optimize its final performance to meet a set of prescribed requirements.
12

The development of an artificial hand using nickel-titanium as actuators

Longela, Makusudi Simon January 2013 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2013. / This thesis outlines a proposed mechanical design, prototyping and testing of a five fingered artificial hand made of 15 articulated joints actuated by Shape Memory Alloys (SMAs) mimicking muscular functions. SMAs Artificial muscles were incorporated in the forearm and artificial tendons made of nylon wires passing through a hollow palm transmit the pulling force to bend the fingers. Torsion springs set in each joint of the fingers create enough restoring force to straighten the finger when the actuators are disengaged. Nickel-Titanium (NiTi) wires were intrinsically embedded within the hand structure allowing significant movements mimicking human hand-like gestures. A control box made of switches connected to the artificial hand helps to control each gesture. A modular approach was taken in the design to facilitate the manufacture and assembly processes. Nickel-Titanium wires were used as actuators to perform the artificial muscle functions by changing their crystallographic structures due to Joule's heating. Rapid prototyping techniques were employed to manufacture the hand in ABS plastic.
13

Músculo de McKibben aplicado em manipulador não condutor. / McKibben\'s muscle applied in non-conductive manipulator.

Lopes, Ivo da Paz 19 May 2014 (has links)
Quando as atividades de um sistema mecatrônico são realizadas em ambientes com intenso campo elétrico e ou magnético, os dispositivos que irão executar as tarefas devem ser cuidadosamente projetados para que a presença de peças metálicas não se torne um risco. O campo elétrico pode gerar descargas elétricas e o campo magnético, exercer forças não previstas sobre peças metálicas. Assim o uso de alguns elementos, como motores elétricos, peças metálicas ou sensores eletrônicos se torna inviável. A motivação inicial para esse trabalho foi encontrar um atuador que possa ser construído sem o uso de elementos metálicos e com ele, construir um manipulador inerte a campos magnéticos e elétricos. Neste contexto, a transmissão de energia para os atuadores por meios hidráulicos ou pneumáticos se torna a opção mais indicada. Frequentemente, sistemas pneumáticos e hidráulicos apresentam atuadores com componentes metálicos, devido a resistência mecânica destes componentes. Em situações na qual os requisitos quanto a esforços são menores, elementos metálicos podem ser substituídos por materiais poliméricos de uso comum na Engenharia. Entre os atuadores hidráulicos e pneumáticos, um que já apresenta poucas partes metálicas é o músculo pneumático artificial (MPA). O MPA possui características tais como: baixo peso relacionado ao esforço gerado, escala de esforços similar a um cilindro pneumático de mesmo tamanho e construção simples. Assim, o MPA foi escolhido como atuador para o manipulador não-condutor desenvolvido neste trabalho. Adotando o MPA como elemento central, este trabalho tem por objetivo identificar as diretrizes para a aplicação do MPA na construção de um manipulador inerte a campos elétricos e magnéticos. Para isso, primeiramente foi desenvolvido um MPA livre de qualquer parte metálica. Visando sua aplicação, as características do músculo como: gama de esforços, tempo de resposta e histerese foram avaliadas através de testes. Algumas estratégias de controle do atuador foram testadas e comparadas, e com o atuador desenvolvido foi construído um manipulador inerte a campos magnéticos e elétricos. O manipulador construído tem como objetivo exercer movimentos distintos sobre a mão de um paciente, o mesmo deve acompanhar o paciente durante um exame de ressonância magnética. O atuador apresentou uma gama de esforços dentro do previsto, um tempo de resposta característico de atuadores pneumáticos e ao contrário do esperado, uma baixa histerese. Através de elementos mecânicos e com o uso de dois MPA, o manipulador foi capaz de exercer um trabalho sobre a mão de um voluntario fora do campo da RM, mostrando a viabilidade da aplicação. / When activities executed by a mechatronic system are performed in environments with strong magnetic and or electric field, the devices that will perform the tasks should be carefully designed so that the presence of metal parts does not become a risk. The electric field can generate electrical currents and the magnetic field may exert unexpected force in a metal part. Thus the use of some elements, such as electric motors, metallic parts or electronic sensors becomes unviable. The initial motivation for this work was to find an actuator that could be built without metallic elements and, using such actuator, build a manipulator inert to magnetic and electric fields. In this context, the use of hydraulic or pneumatic actuators becomes the most indicated option. Frequently, pneumatic and hydraulic systems have actuators with metal parts so as resist mechanical loads. In situations where the actuator is loaded by small loads, metal parts may be replaced by polymeric materials commonly used in Engineering. Among hydraulic and pneumatic actuators, one that already presents a few metal parts is the pneumatic artificial muscle (PAM). PAM has characteristics such as: low weight to effort ratio, simple construction as well as range of generated force and dimensions similar to a pneumatic cylinder. Thus, the PAM is chosen as the actuator for the non-conductive manipulator developed in this work. Adopting the PAM as a central element, this work aims identifying directives on using the PAM in the construction of a manipulator inert to electric and magnetic fields. For this, firstly it is developed a PAM free from any metal part. Next, the characteristics of the PAM such as range of efforts, response time and hysteresis curve are assessed through tests. Some strategies for the actuator control are tested and compared. Finally, using the developed actuator, a manipulator inert to magnetic and electric fields are constructed. The purpose of this manipulator is to induce motions to the fingers of a patient hand while the patient is examined in a MRI (magnetic resonance imaging) equipment. The actuator presented a range of efforts according to expectations, a response time compatible with pneumatic actuators and, contrary to expectations, low hysteresis.
14

Músculo de McKibben aplicado em manipulador não condutor. / McKibben\'s muscle applied in non-conductive manipulator.

Ivo da Paz Lopes 19 May 2014 (has links)
Quando as atividades de um sistema mecatrônico são realizadas em ambientes com intenso campo elétrico e ou magnético, os dispositivos que irão executar as tarefas devem ser cuidadosamente projetados para que a presença de peças metálicas não se torne um risco. O campo elétrico pode gerar descargas elétricas e o campo magnético, exercer forças não previstas sobre peças metálicas. Assim o uso de alguns elementos, como motores elétricos, peças metálicas ou sensores eletrônicos se torna inviável. A motivação inicial para esse trabalho foi encontrar um atuador que possa ser construído sem o uso de elementos metálicos e com ele, construir um manipulador inerte a campos magnéticos e elétricos. Neste contexto, a transmissão de energia para os atuadores por meios hidráulicos ou pneumáticos se torna a opção mais indicada. Frequentemente, sistemas pneumáticos e hidráulicos apresentam atuadores com componentes metálicos, devido a resistência mecânica destes componentes. Em situações na qual os requisitos quanto a esforços são menores, elementos metálicos podem ser substituídos por materiais poliméricos de uso comum na Engenharia. Entre os atuadores hidráulicos e pneumáticos, um que já apresenta poucas partes metálicas é o músculo pneumático artificial (MPA). O MPA possui características tais como: baixo peso relacionado ao esforço gerado, escala de esforços similar a um cilindro pneumático de mesmo tamanho e construção simples. Assim, o MPA foi escolhido como atuador para o manipulador não-condutor desenvolvido neste trabalho. Adotando o MPA como elemento central, este trabalho tem por objetivo identificar as diretrizes para a aplicação do MPA na construção de um manipulador inerte a campos elétricos e magnéticos. Para isso, primeiramente foi desenvolvido um MPA livre de qualquer parte metálica. Visando sua aplicação, as características do músculo como: gama de esforços, tempo de resposta e histerese foram avaliadas através de testes. Algumas estratégias de controle do atuador foram testadas e comparadas, e com o atuador desenvolvido foi construído um manipulador inerte a campos magnéticos e elétricos. O manipulador construído tem como objetivo exercer movimentos distintos sobre a mão de um paciente, o mesmo deve acompanhar o paciente durante um exame de ressonância magnética. O atuador apresentou uma gama de esforços dentro do previsto, um tempo de resposta característico de atuadores pneumáticos e ao contrário do esperado, uma baixa histerese. Através de elementos mecânicos e com o uso de dois MPA, o manipulador foi capaz de exercer um trabalho sobre a mão de um voluntario fora do campo da RM, mostrando a viabilidade da aplicação. / When activities executed by a mechatronic system are performed in environments with strong magnetic and or electric field, the devices that will perform the tasks should be carefully designed so that the presence of metal parts does not become a risk. The electric field can generate electrical currents and the magnetic field may exert unexpected force in a metal part. Thus the use of some elements, such as electric motors, metallic parts or electronic sensors becomes unviable. The initial motivation for this work was to find an actuator that could be built without metallic elements and, using such actuator, build a manipulator inert to magnetic and electric fields. In this context, the use of hydraulic or pneumatic actuators becomes the most indicated option. Frequently, pneumatic and hydraulic systems have actuators with metal parts so as resist mechanical loads. In situations where the actuator is loaded by small loads, metal parts may be replaced by polymeric materials commonly used in Engineering. Among hydraulic and pneumatic actuators, one that already presents a few metal parts is the pneumatic artificial muscle (PAM). PAM has characteristics such as: low weight to effort ratio, simple construction as well as range of generated force and dimensions similar to a pneumatic cylinder. Thus, the PAM is chosen as the actuator for the non-conductive manipulator developed in this work. Adopting the PAM as a central element, this work aims identifying directives on using the PAM in the construction of a manipulator inert to electric and magnetic fields. For this, firstly it is developed a PAM free from any metal part. Next, the characteristics of the PAM such as range of efforts, response time and hysteresis curve are assessed through tests. Some strategies for the actuator control are tested and compared. Finally, using the developed actuator, a manipulator inert to magnetic and electric fields are constructed. The purpose of this manipulator is to induce motions to the fingers of a patient hand while the patient is examined in a MRI (magnetic resonance imaging) equipment. The actuator presented a range of efforts according to expectations, a response time compatible with pneumatic actuators and, contrary to expectations, low hysteresis.
15

Development of an artificial muscle for a soft robotic hand prosthesis / Développement d'un muscle artificiel pour une prothèse de main robotique souple

Ramirez Arias, José Luis 09 December 2016 (has links)
Le thème central de cette thèse est la conception d’actionneurs doux à partir de matériaux intelligents et d’une prothèse de main robotique souple. Notre approche prends en compte les différents points qui peuvent influer sur le développement d’une stratégie d’actionnement ou d’un muscle artificiel : i) Les mécanismes et la fonctionnalité de la main humaine afin d’identifier les exigences fonctionnelles pour une prothèse de main robotique en matière de préhension. ii) L’analyse et l’amélioration des mécanismes de la main robotique pour intégrer un comportement souple dans la prothèse. iii) L’évaluation expérimentale de la prothèse de main robotique afin d’identifier les spécifications du système d’actionnement nécessaire au fonctionnement cinématique et dynamique du robot. iv) Le développement et la modélisation d’une stratégie d’actionnement utilisant des matériaux intelligents.Ces points sont abordés successivement dans les 4 chapitres de cette thèse1. Analyse du mouvement de la main humaine pour l’identification des exigences technologiques pour la prothèse de main robotique.2. Conception et modélisation de la prothèse de main robotique à comportement souple.3. Evaluation mécatronique de la prothèse de main.4. Conception d’un muscle artificiel basé sur des matériaux intelligents. / In the field of robotic hand prosthesis, the use of smart and soft materials is helpful in improving flexibility, usability, and adaptability of the robots, which simplify daily living activities of prosthesis users. However, regarding the smart materials for artificial muscles, technologies are considered to be far from implementation in anthropomorphic robotic hands. Therefore, the target of this thesis dissertation is to reduce the gap between smart material technologies and robotic hand prosthesis. Five central axes address the problem: i)identification of useful grasping gestures and reformulation of the robotic hand mechanism, ii) analysis of human muscle behavior to mimic human grasping capabilities, iii) modeling robot using the hybrid model DHKK-SRQ for the kinematics and the virtual works principle for dynamics, iv) definition of actuation requirements considering the synergy between prehension conditions and robot mechanism, and v) development of a smart material based actuation system.This topics are addressed in four chapters:1. Human hand movement analysis toward the hand prosthesis requirements2. Design and modeling of the soft robotic hand ProMain-I3. Mechatronic assessment of Prosthetic hand4. Development of an artificial muscle based on smart materials
16

Návrh umělého svalu pro oblast robotiky / Design of Artificial Muscle for Robotics Area

Závodný, Tomáš January 2018 (has links)
The diploma thesis is structured with regard to the design and use of artificial muscle in robotics. The thesis starts with a theoretical section where different types of artificial muscles are described with their advantages and disadvantages. After considering all the types of described muscles, one species was selected for further processing. Vacuum-controlled origami muscles were chosen for use in a small manipulation device. After the design of the whole machine, the risk analysis and the economic evaluation of the whole design were carried out.
17

Feedback Control of Ionic Polymer Actuators

Mallavarapu, Kiran 26 July 2001 (has links)
An ionic polymer actuator consists of a thin Nafion-117 sheet plated with gold or platinum on both sides. An ionic polymer actuator undergoes large deformation in the presence of low applied voltage across its thickness and exhibits low impedance. They can also be used as large displacement sensors by bending them to induce stresses and generate a voltage response. They operate best in a humid environment. Ionic polymer actuators have been used for various practical applications such as bio-mimetic robotic propulsion, flexible low mass robotic arms, propellors for swimming robotic structures, linear and platform type robotic actuators and active catheter systems. One of the disadvantages of ionic polymer actuators is that their settling time to a unit step voltage is on the order of 5-20 seconds in a cantilever configuration. The slow time constant of an ionic polymer limits the actuation bandwidth. The characteristics of ionic polymer actuators, low force and large displacement (as compared to other actuator technologies such as PZT or PVDF), cannot be used in applications requiring a faster response time for a given actuation signal. Due to this limitation, many applications will not be able to make use of the large displacement effectively because of the limited bandwidth of the actuator. Another disadvantage of using an ionic polymer actuator is that the stiffness of the actuator is a function of the hydration of the polymer. Difficulties in controlling the hydration, which changes with respect to time, results in inconsistencies in the mechanical response exhibited by the polymers during continual usage. Several physical models of ionic polymer actuators have been proposed. The physical phenomenon responsible for the bending is not completely understood and no clear set of principles have been able to explain the motion of the polymers completely. Physical phenomena like ionic motion, back diffusion of water and electrostatic force have been used to explain these models. This research demonstrates the use of feedback control to overcome the limitation of slow settling time. First, an empirical model of the ionic polymers developed by Kanno was modified by studying the step response of these actuators. The empirical model is used to design a feedback compensator by state space modeling techniques. Since the ionic polymer actuator has a slow settling time in the open-loop, the design objectives are to minimize the settling time and constrain the control voltage to be less than a prescribed value. The controller is designed using Linear Quadratic Regulator (LQR) techniques which reduced the number of design parameters to one variable. Simulations are performed which show settling times of 0.03 seconds for closed-loop feedback control are possible as compared to the open-loop settling time of 16-18 seconds. The maximum control voltage varied from 1.2 Volts to 3.5 Volts depending on the LQR design parameter. The controller is implemented and results obtained are consistent with the simulations. Closed-loop settling time is observed to be 4-8 seconds and the ratio of the peak response to the steady-state response is reduced by an order of magnitude. Discrepancies between the experiment and the simulations are attributed to the inconsistencies in the resonant frequency of the actuator. Experiments demonstrate that changes in the surface hydration of the polymer result in 20\% variations in the actuator resonance. Variations in the actuator resonance require a more conservative compensator design, thus limiting the performance of the feedback control system. / Master of Science
18

Material and mechanical emulation of the human hand

Hockings, Nicholas January 2017 (has links)
The hands and feet account for half of the complexity of the musculoskeletal system, while the skin of the hand is specialised with many important structures. Much of the subtlety of the mechanism of the hand lies in the soft tissues, and the tactile and proprioceptive sensitivity depends on the large number of mechanoreceptors embedded in specific structures of the soft tissues. This thesis investigates synthetic materials and manufacturing techniques to enable building robots that reproduce the biomechanics and tactile sensitivity of vertebrates – histomimetic robotics. The material and mechanical anatomy of the hand is reviewed, highlighting difficulty of numerical measurement in soft-tissue anatomy, and the predictive nature of descriptive anatomical knowledge. The biomechanical mechanisms of the hand and their support of sensorimotor control are presented. A palate of materials and layup techniques are identified for emulating ligaments, joint surfaces, tendon networks, sheaths, soft matrices, and dermal structures. A method for thermoplastically drawing fine elastic fibres, with liquid metal amalgam cores, for connecting embedded sensors is demonstrated. The performance requirements of skeletal muscles are identified. Two classes of muscle-like bulk MEMS electrostatic actuators are shown theoretically to be capable of meeting these requirements. Means to manufacture them, and their additional application as mechanoreceptors are described. A novel machine perception algorithm is outlined as a solution to the problem of measuring soft tissue anatomy, CAD/CAE/CNC for layup of histomimetic robots, and sensory perception by such robots. The results of the work support the view that histomimetic robotics is a viable approach, and identify a number of areas for further investigation including: polymer modification by graft-polymerisation, automated layup tools, and machine perception.
19

Desenvolvimento e caracterização de uma mão robótica acionada por atuadores de liga com memória de forma

Silva, André Felipe Cavalcante 28 August 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2017-05-24T14:46:36Z No. of bitstreams: 1 arquivototal.pdf: 13879425 bytes, checksum: b7216c05b85b83f1b7adc4577ae083ba (MD5) / Made available in DSpace on 2017-05-24T14:46:36Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 13879425 bytes, checksum: b7216c05b85b83f1b7adc4577ae083ba (MD5) Previous issue date: 2015-08-28 / This work is based on studies that prove a great rejection rate by amputees on using prosthetic upper limbs due to various problems, such as weight, high noise and lack of anthropomorphism. In this context, this paper presents the development of a robotic hand drive which is not realized by conventional actuators, constituted of wires of a shape memory alloy (SMA). The mechanical structure of the robot hand was designed in CAD software and subsequently manufactured with ABS polymer through rapid prototyping using a three-dimensional printer. The project was designed partially based on the physiological characteristics of the human hand, regarding especially to the angles formed by fingers’ phalanges. A mechanical system was developed in order to compactly accommodate the thin wires of a NiTi SMA, known in this work as Artificial Muscle (AM) which made the compression of SMA wires easier. The performance (operation) of the fingers occurs by the AM activation that are connected to cables arranged in the lower part of the fingers’ structure, which, when activated, perform the movement of flexion. The return of each phalanx, or extension movement of the fingers occurs passively. Elastic elements were installed in the upper part of the phalanges which are responsible for this movement. To monitor the angles formed by each phalanx was used a resistive type sensor that is inserted inside it, varying its electric resistance according to angle variation. On top of this system, a fuzzy logic based controller was developed and it proved to be effective on monitoring the position of the robotic hand’s fingers. The performance of the robot hand can be considered appropriate, as it could partially achieve the desired angles based on the project design. / Este trabalho está fundamentado em estudos que comprovam o grande índice de rejeição por parte de pessoas amputadas ao utilizarem próteses de membros superiores devido a problemas diversos, tais como: peso, ruído elevado e falta de antropomorfismo. Nesse contexto, neste trabalho é apresentado o desenvolvimento de uma mão robótica cujo acionamento é realizado por atuadores não convencionais, constituídos de fios de uma Liga com Memória de Forma (LMF). A estrutura mecânica da mão robótica foi projetada em programa computacional CAD e posteriormente fabricada em polímero ABS por meio de prototipagem rápida usando uma impressora tridimensional. O projeto foi concebido parcialmente com base nas características fisiológicas da mão humana, no que diz respeito principalmente aos ângulos formados pelas falanges dos dedos. Foi desenvolvido um sistema mecânico para acondicionar os fios finos de uma LMF de Ni-Ti de forma compacta denominado neste trabalho por Músculo Artificial (MA) o que facilitou a compactação dos fios de LMF. A atuação dos dedos ocorre pela ativação dos MA que estão conectados a cabos dispostos na parte inferior da estrutura dos dedos, os quais, ao serem ativados, realizam o movimento de flexão. O retorno de cada falange, ou seja, movimento de extensão dos dedos, ocorre de forma passiva. Foram instalados na parte superior das falanges elementos elásticos que são responsáveis por este movimento. Para monitorar os ângulos formados por cada falange foi utilizado um sensor do tipo resistivo que fica inserido dentro das falanges, variando sua resistência elétrica de acordo com a variação dos ângulos. Somado a este sistema, foi desenvolvido um controlador baseado em lógica fuzzy que se mostrou eficiente no monitoramento da posição dos dedos da mão robótica. Verificou-se que o desempenho da mão robótica pode ser considerado adequado, pois conseguiu atingir parcialmente os ângulos desejados de projeto.Este trabalho está fundamentado em estudos que comprovam o grande índice de rejeição por parte de pessoas amputadas ao utilizarem próteses de membros superiores devido a problemas diversos, tais como: peso, ruído elevado e falta de antropomorfismo. Nesse contexto, neste trabalho é apresentado o desenvolvimento de uma mão robótica cujo acionamento é realizado por atuadores não convencionais, constituídos de fios de uma Liga com Memória de Forma (LMF). A estrutura mecânica da mão robótica foi projetada em programa computacional CAD e posteriormente fabricada em polímero ABS por meio de prototipagem rápida usando uma impressora tridimensional. O projeto foi concebido parcialmente com base nas características fisiológicas da mão humana, no que diz respeito principalmente aos ângulos formados pelas falanges dos dedos. Foi desenvolvido um sistema mecânico para acondicionar os fios finos de uma LMF de Ni-Ti de forma compacta denominado neste trabalho por Músculo Artificial (MA) o que facilitou a compactação dos fios de LMF. A atuação dos dedos ocorre pela ativação dos MA que estão conectados a cabos dispostos na parte inferior da estrutura dos dedos, os quais, ao serem ativados, realizam o movimento de flexão. O retorno de cada falange, ou seja, movimento de extensão dos dedos, ocorre de forma passiva. Foram instalados na parte superior das falanges elementos elásticos que são responsáveis por este movimento. Para monitorar os ângulos formados por cada falange foi utilizado um sensor do tipo resistivo que fica inserido dentro das falanges, variando sua resistência elétrica de acordo com a variação dos ângulos. Somado a este sistema, foi desenvolvido um controlador baseado em lógica fuzzy que se mostrou eficiente no monitoramento da posição dos dedos da mão robótica. Verificou-se que o desempenho da mão robótica pode ser considerado adequado, pois conseguiu atingir parcialmente os ângulos desejados de projeto.
20

Uma contribuição ao desenvolvimento de manipuladores antropomorficos com enfase na utilização de musculos artificiais / A contribution to the development of anthropomorphic manipulators with emphasis in the use of artificial muscles

Mendes, Eduardo Felippe Aguiar 26 February 2007 (has links)
Orientadores: Helder Anibal Hermini, Paulo R. G. Kurka / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-10T05:53:08Z (GMT). No. of bitstreams: 1 Mendes_EduardoFelippeAguiar_M.pdf: 4299696 bytes, checksum: d73355f383b74bd0e49b3bc2473e5b6b (MD5) Previous issue date: 2007 / Resumo: Este trabalho visou o estudo de manipuladores à semelhança do membro superior humano. Após o estudo do membro superior humano e dos robôs antropomórficos disponíveis tanto na industria quanto no meio acadêmico, utilizaram-se teorias de modelagem geométrica, cinemática direta e cinemática inversa para realizar o modelo de um manipulador robótico antropomórfico. A partir desse modelo desenvolveu-se um software em LabVIEW de Cinemática Direta e Cinemática Inversa de operação em tempo real. Com a intenção de verificar os acionadores mais apropriados disponíveis atualmente, um estudo de músculos artificiais se seguiu, onde se observou a maior viabilidade do músculo artificial de SMA ativado eletricamente. Um protótipo de junta acionada por músculos artificiais foi desenvolvido e controlado via computador. Como resultado deste trabalho conclui-se que há ainda muito para ser desenvolvido na área de manipuladores antropomórficos, principalmente no que diz respeito aos músculos artificiais / Abstract: This work sought the study of manipulators to the similarity of the human superior member. After the study of human superior member, and of anthropomorphics robotics available in the industries and in the academic middle, it was used theories of geometric modelling, direct kinematics modelling and inverse kinematics modelling to make the model of a anthropomorphic robotic manipulator. With that model it grew a software in LabVIEW of real time Direct Kinematics and Inverse Kinematics. With the intention of verifying the available most appropriate actuators, a study of artificial muscles was proceeded, where the largest viability of the artificial muscle of SMA activated electrically was observed. A joint prototype actuated by artificial muscles was developed and controlled through computer. As a result of this work it is ended that there is still a lot to be developed in the area of anthropomorphic manipulators, mainly in what it concerns the artificial muscles / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica

Page generated in 0.047 seconds