• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 570
  • 336
  • 39
  • 21
  • 15
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1192
  • 1192
  • 1192
  • 570
  • 554
  • 421
  • 157
  • 134
  • 129
  • 128
  • 120
  • 110
  • 94
  • 93
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicos / Proposal for implementation in dedicate hardware of competitive neural networks with analog integrated circuits techniques"

Molz, Rolf Fredi January 1998 (has links)
Neste trabalho apresenta-se uma proposta de uma técnica para implementação em hardware, das estruturas básicas de uma Rede Neural Competitiva, baseada em técnicas analógicas. Através desta proposta, será abordada uma das classes mais interessantes de Redes Neurais Artificiais (RNA) que são as Redes Neurais Competitivas (RNC), que possuem forte inspiração biológica. As equações fundamentais que descrevem o comportamento da RNC foram derivadas de estudos interdisciplinares, a maioria envolvendo observações neurofisiológicas. O estudo do neurônio biológico, por exemplo, nos leva a clássica equação da membrana. A técnica mostrada para a implementação das Redes Neurais Competitivas se baseia no use das técnicas analógicas. Estas conduzem a um projeto mais compacto além de permitirem um processamento em tempo real, visto que o circuito computacional analógico altera simultaneamente e continuamente todos os estados dos neurônios que se encontram interligados em paralelo. Para esta proposta de implementação, a mostrado que as equações fundamentais que governam as Redes Neurais Competitivas possuem uma relação com componentes eletrônicos básicos, podendo então, serem implementados através destes simples componentes com os quais as equações fundamentais se relacionam. Para tanto, é mostrado por meio de simulações em software, o comportamento das equações fundamentais deste tipo de Redes Neurais, e então, é comparado este comportamento, com os obtidos através de simulações elétricas dos circuitos equivalentes oriundos destas equações fundamentais. Mostra-se também, em ambas as simulações, uma das características mais importantes existentes nos modelos de RNC, conhecida como Memória de Tempo Curto (STM). Por fim, é apresentada uma aplicação típica na área de clusterização de padrões utilizando pesos sinápticos, a fim de demonstrar a implementação utilizando as técnicas descritas durante o trabalho. Esta aplicação é demonstrada através de simulações elétricas, sendo estas realizadas para tipos diferentes de tecnologia, mostrando assim, o correto desempenho da proposta deste trabalho. / In this work we present a proposal of a technique to hardware implementation of the basic structures of a Competitive Neural Network, based on analog circuits techniques. This proposal approaches one of the most interesting classes of Artificial Neural Networks (ANN) that are the Competitive Neural Networks (CNN), that possess strong biological inspiration. The fundamental equations that describe the behavior of CNN were derived from interdisciplinary studies, mostly involving neurophysiological observations. The study of the biological neuron, for example, leads to the classical membrane equation. The presented technique for implementation of Competitive Neural Networks is based on the use of analog circuits techniques. This leads to a more compact project and allows real time processing, because computation in analog circuits modifies simultaneously and continuouslly all the states of the neurons that are connected in parallel. In this proposal, it is shown that the fundamental equations that describe the behavior of Competitive Neural Networks possess a relationship with some basic electronic components. This fact allows the direct implementation of CNN with these electronic components. Initially the behavior of the fundamental equations of this type of Neural Networks is studied by means of software simulations. This behavior is then compared, with the one obtained through electric simulations of the equivalent circuits originated from these fundamental equations. It is also shown, in both simulations, one of the more important characteristic in the models of CNN, known as Short Term Memory (STM). Finally, a typical application is presented in the area of pattern clustering using synaptic weights, to demonstrate an implementation using the techniques described in this work. This application is demonstrated through electric simulations, for different IC technologies, comproving the correctness of the presented proposal.
432

Umělé neuronové sítě a jejich využití při zpracování 3D-dat / Artificial neural networks and their application for 3D-data processing

Pihera, Josef January 2012 (has links)
Neural networks represent a powerful means capable of processing various multi-media data. Two applications of artificial neural networks to 3D surface models are examined in this thesis - detection of significant features in 3D data and model classification. The theoretical review of existing self-organizing neural networks is presented and followed by description of feed-forward neural networks and convolutional neural networks (CNN). A novel modification of existing model - N-dimensional convolutional neural networks (ND- CNN) - is introduced. The proposed ND-CNN model is enhanced by an existing technique for enforced knowledge representation. The developed theoretical methods are assessed on supporting experiments with scanned 3D face models. The first experiment focuses on automatic detection of significant facial features while the second experiment performs classification of the models by their gender using the CNN and ND-CNN.
433

Generalização e Robustez: Aprendizagem em Redes Neurais na Presença de Ruído / Generalization and robustness: learning in neural networks in the presence of noise

Roberta Simonetti 09 May 1997 (has links)
Neste trabalho investigamos o aprendizado supervisionado on-line, com ênfase nas habilidades de generalização, de redes neurais feedforward. O estudo de algoritmos de aprendizagem ótimos, no sentido da generalização, é estendido para duas diferentes classes de arquiteturas: a máquina paridade com estrutura de árvore e K unidades escondidas, e o perceptron reversed wedge, uma máquina de uma camada com função de transferência não monotônica. O papel do ruído é de fundamental importância na teoria de aprendizagem. Neste trabalho estudamos os processos com ruído que podem ser parametrizados por uma única quantidade, o nível de ruído. No caso da máquina paridade analisamos o aprendizado na presença de ruído multiplicativo (na saída). O algoritmo ótimo é muito superior aos algoritmos de aprendizagem até então apresentados, como o algoritmo de mínima ação (LAA), como podemos ver, por exemplo, através do comportamento do erro de generalização que decai após a apresentação de p exemplos, com l/p ao invés de l/\'p POT. 1/3\' como no caso do LAA. Além deste fato, observa-se que não existe um nível de ruído crítico a partir do qual a rede não é capaz de generalizar, como ocorre no LAA. Além do ruído multiplicativo, no caso do perceptron reversed wedge consideramos também o ruído aditivo. Analisamos a função de modulação fornecida pelo algoritmo ótimo e as curvas de aprendizagem. A aprendizagem ótima requer o uso de parâmetros que usualmente não estão disponíveis. Neste caso estudamos a influência da utilização de uma estimativa do nível de ruído sobre as curvas de aprendizado. Estes resultados são apresentados na forma do que chamamos de diagrama de robustez, no espaço de nível de ruído real versus nível de ruído estimado. As linhas de transição deste diagrama definem regiões com comportamentos dinâmicos diferentes. Entre as propriedades mais interessantes encontradas, destacamos a universalidade do diagrama de robustez para ruído multiplicativo, uma vez que é exatamente o mesmo para a máquina paridade e comitê com estrutura de árvore, e para o perceptron reversed-wedge. Entretanto, esta universalidade não se estende para o caso de ruído aditivo, uma vez que, neste caso, os diagramas dependem da arquitetura em questão. / In this work online supervised learning is investigated with emphasis on the generalization abilities of feedforward neural networks. The study of optimal learning algorithms, in the sense of generalization, is extended to two different classes of architectures; the tree parity machine (PM) with K hidden units and the reverse wedge perceptron (RWP), a single layer machine with a non monotonic transfer function. The role of noise is of fundamental importance in learning theory, and we study noise processes which can be parametrized by a single quantity, the noise level. For the PM we analize learning in the presence of multiplicative or output noise. The optimal algorithm is far superior than previous learning algorithms, such as the Least Action Algorithm (LAA), since for example, the generalization error\'s decay is proportional to l /p instead of l/\'p POT. 1/3\' for the LAA, after p examples have been used for training. Furthermore there is no critical noise level, beyond which no generalization ability is attainable, as is the case for the LAA. For the RW perceptron in addition to multiplicative noise we also consider additive noise. The optimal algorithm modulation function and the learning curves are analized. Optimal learning requires using certain usually unavailable parameters. In this case, we study the influence that misevaluation of the noise levels has on the learning curves. The results are presented in terms of what we have called Robustness Phase Diagrams (RPD), in a space of real noise level against assumed noise level. The RPD boundary lines separate between different dynamical behaviours. Among the most interesting properties, we have found the universality of the RPD for multiplicative noise, since it is exactly the same for the PM, RWP and the tree committee machine. However this universality does not hold for the additive noise case, since RPD\'s are shown to be architecture dependent.
434

Redes neurais artificiais e redes complexas: aplicaÃÃes em processos quÃmicos. / Artificial neural networks and complex networks: an application in chemical plants.

Daniel Muniz Bezerra 29 June 2005 (has links)
nÃo hà / Na primeira parte deste trabalho, empregamos uma rede neural artificial (RNA) treinada com algoritmo back-propagation para inferir a volatilidade dos gases liquefeitos de petrÃleo (GLP) produzidos em uma torre de fracionamento de lÃquido de gÃs natural (LGN). Os resultados obtidos indicam que a RNA fornece melhores respostas do que um simulador desenvolvido com base fenomenolÃgica que se encontra em fase de implementaÃÃo na planta em estudo. Na segunda parte da dissertaÃÃo, o nosso objetivo primordial à demonstrar que os fluxogramas de processos de refinarias de petrÃleo podem estar intrinsecamente associados à topologias de redes complexas, que sÃo scale-free, exibem efeitos de mundo pequeno e possuem organizaÃÃo hierÃrquica. A emergÃncia dessas propriedades em redes artificiais à explicada como uma consequÃncia dos princÃpios usados no design de projeto dos processos, os quais incluem regras heurÃsticas e tÃcnicas algorÃtmicas. Esperamos que esses resultados sejam tambÃm vÃlidos para plantas quÃmicas de diferentes tipos e capacidades. / In the first part of this work we apply an artificial neural network (ANN) trained with a back-propagation algorithm to predict the volatility of liquefied petroleum gases (LPG) produced from a fractionation tower of natural gas liquid (NGL). Our analysis indicate that the ANN scheme provides better results than a simulator developed based phenomenological which is currently being implemented in the plant under study. In the second part, our primary objective is to demonstrate that flowsheets of oil refineries can be intrinsically associated to complex network topologies, which are scale-free, display small-word effect and have hierarchical organization. The emergence of these properties artificial networks is explained as a consequence of the design principles used in the processâ design, which include heuristics rules and algorithmic techniques. We expect these results to be also valid for chemical plants of different types and capacities.
435

Estatísticas de ordem superior e redes neurais artificiais aplicadas à proteção digital de linhas de transmissão / Higher-order statistics and artificial neural networks applied to transmission line protection

Janison Rodrigues de Carvalho 02 April 2013 (has links)
Neste trabalho, é apresentado e discutido um novo modelo para proteção de Linhas de Transmissão. O sistema proposto executa, individualmente, as etapas tradicionais da filosofia de proteção de distância: detecção, classificação e localização. Este modelo emprega Estatísticas de Ordem Superior (EOS) como ferramenta de extração de características, para posterior aplicação das Redes Neurais Artificiais (RNAs). As RNAs são responsáveis pelas tomadas de decisões do sistema, no sentido de identificar a ocorrência da falta e o tipo da mesma, além de localizar a falta no que tange às zonas de proteção consideradas. O processamento com tais estatísticas é responsável pela transformação dos dados para um domínio onde as diferentes faltas são evidenciadas através de agrupamentos de dados (padrões). O banco de dados disponível com sinais elétricos de LTs em condições de falta é utilizado para cálculo das estatísticas e o posterior treinamento supervisionado (e validação) das redes. A junção das etapas de proteção em um único modelo permitiu o desenvolvimento de um protótipo de relé, sendo executada uma bateria extensiva de testes, com as mais diversas condições de faltas possíveis. Apesar de operar apenas com sinais de corrente, o método proposto alcançou resultados que, em comparação com a técnica tradicional de proteção de distância, baseada na impedância aparente, aumenta consideravelmente o desempenho da proteção de LTs. Especialmente para as faltas monofásicas, de ocorrência mais comum, o desempenho obtido com o algoritmo proposto é largamente superior ao obtido com um relé de distância tradicional normalmente empregado em proteção de LTs, evidenciando a relevância da técnica empregada em aplicações de proteção. / A novel method of Transmission Lines (TLs) protection is presented and discussed in this work. The proposed algorithm performs the traditional steps of distance relaying, such as: fault detection, classification and location. The new method applies the Higher Order Statistics (HOS), also known as cumulants, as a tool for feature extraction in order to apply Artificial Neural Networks (ANN) for pattern classification. These networks are responsible for the processing of information, identifying a possible fault condition, the type of fault and, finally, its location in terms of fault zones considered for the problem. The application of HOS in a protection scheme is responsible for the transformation of electrical data, such as current signals, to a different domain where the different types of faults are highlighted by different classes of samples. The available database was obtained by simulating an Electric Power System and it is used for computing the statistics and training/validating the distinct neural networks of each step of the distance protection. A relay prototype is obtained by combining these steps in a synchronized operation. This prototype allowed the execution of extensive tests, simulating the operation of a protective system in real-time. Despite the use of currents signals only, the proposed method provided efficient protection for the EPS under study. In fact, comparing the results with a traditional method applied to distance protection, based on apparent impedance, an improvement of the protection performance was demonstrated. Especially for faults involving one phase and the ground, the most common in power systems, the results of the new methodology was significantly superior to that of the conventional relay. It can be concluded that the technique presents a high relevance for applications in transmission line protection.
436

Metodologias para desenvolvimento de mapas auto-organizáveis de Kohonen executados em FPGA. / Methodology for the development of Kohonen\'s self-organizing maps implemented in FPGA.

Miguel Angelo de Abreu de Sousa 21 May 2018 (has links)
Dentro do cenário de projeto de circuitos elétricos orientados para o processamento de redes neurais artificiais, este trabalho se concentra no estudo da implementação de Mapas Auto-organizáveis (SOM, do inglês, Self-Organizing Maps) em chips FPGA. A pesquisa aqui realizada busca, fundamentalmente, responder à seguinte pergunta: como devem ser projetadas as arquiteturas computacionais de cada etapa de processamento do SOM para serem adequadamente executadas em FPGA? De forma mais detalhada, o trabalho investiga as possibilidades que diferentes circuitos de computação do SOM oferecem em relação à velocidade de processamento, ao consumo de recursos do FPGA e à consistência com o formalismo teórico que fundamenta esse modelo de rede neural. Tal objetivo de pesquisa é motivado por possibilitar o desenvolvimento de sistemas de processamento neural que exibam as características positivas típicas de implementações diretas em hardware, como o processamento embarcado e a aceleração computacional. CONTRIBUIÇÕES PRINCIPAIS No decorrer da investigação de tais questões, o presente trabalho gerou contribuições com diferentes graus de impacto. A contribuição mais essencial do ponto de vista de estruturação do restante da pesquisa é a fundamentação teórica das propriedades de computação do SOM em hardware. Tal fundamentação é importante pois permitiu a construção dos alicerces necessários para o estudo das diferentes arquiteturas de circuitos exploradas neste trabalho, de forma que estas permanecessem consistentes com as premissas teóricas que certificam o modelo de computação neural estudado. Outra contribuição avaliada como de grande impacto, e que se consolida como um objeto gerado pela pesquisa, é a proposta de um circuito processador para SOM em FPGA que possui o estado-da-arte em velocidade de computação, medido em CUPS (Connections Updated Per Second). Tal processador permite atingir 52,67 GCUPS, durante a fase de treinamento do SOM, um ganho de aproximadamente 100% em relação aos trabalhos publicados na literatura. A aceleração possibilitada pela exploração de processamentos paralelos em FPGA, desenvolvida neste trabalho, é de três a quatro ordens de grandeza em relação a execuções em software do SOM com a mesma configuração. A última contribuição considerada como de grande impacto é a caracterização da execução do SOM em FPGA. Tal avaliação se faz necessária porque os processos de computação dos modelos neurais em hardware, embora semelhantes, não são necessariamente idênticos aos mesmos processos executados em software. Desta forma, a contribuição deste ponto de pesquisa pode ser entendida como a análise do impacto das mudanças implementadas na computação do SOM em FPGA em relação à execução tradicional do algoritmo, feita pela avaliação dos resultados produzidos pela rede neural por medidas de erros topográficos e de quantização. Este trabalho também gerou contribuições consideradas como de médio impacto, que podem ser divididas em dois grupos: aplicações práticas e aportes teóricos. A primeira contribuição de origem prática é a investigação de trabalhos publicados na literatura envolvendo SOM cujas aplicações podem ser viabilizadas por implementações em hardware. Os trabalhos localizados nesse levantamento foram organizados em diferentes categorias, conforme a área de pesquisa - como, por exemplo, Indústria, Robótica e Medicina - e, em geral, eles utilizam o SOM em aplicações que possuem requisitos de velocidade computacional ou embarque do processamento, portanto, a continuidade de seus desenvolvimentos é beneficiada pela execução direta em hardware. As outras duas contribuições de médio impacto de origem prática são as aplicações que serviram como plataforma de teste dos circuitos desenvolvidos para a implementação do SOM. A primeira aplicação pertence à área de telecomunicações e objetiva a identificação de símbolos transmitidos por 16-QAM ou 64-QAM. Estas duas técnicas de modulação são empregadas em diversas aplicações com requisitos de mobilidade - como telefonia celular, TV digital em dispositivos portáteis e Wi-Fi - e o SOM é utilizado para identificar sinais QAM recepcionados com ruídos e distorções. Esta aplicação gerou a publicação de um artigo na revista da Springer, Neural Computing and Applications: Sousa; Pires e Del-Moral-Hernandez (2017). A segunda aplicação pertence à área de processamento de imagem e visa reconhecer ações humanas capturadas por câmeras de vídeo. O processamento autônomo de imagens executado por chips FPGA junto às câmeras de vídeo pode ser empregado em diferentes utilizações, como, por exemplo, sistemas de vigilância automática ou assistência remota em locais públicos. Esta segunda aplicação também é caracterizada por demandar arquiteturas computacionais de alto desempenho. Todas as contribuições teóricas deste trabalho avaliadas como de médio impacto estão relacionadas ao estudo das características de arquiteturas de hardware para computação do modelo SOM. A primeira destas é a proposta de uma função de vizinhança do SOM baseada em FPGA. O objetivo de tal proposta é desenvolver uma expressão computacional para ser executada no chip que constitua uma alternativa eficiente tanto à função gaussiana, tradicionalmente empregada no processo de treinamento do SOM, quanto à função retangular, utilizada de forma rudimentar nas primeiras pesquisas publicadas sobre a implementação do SOM em FPGA. A segunda destas contribuições é a descrição detalhada dos componentes básicos e dos blocos computacionais utilizados nas diferentes etapas de execução do SOM em FPGA. A apresentação dos detalhes da arquitetura de processamento, incluindo seus circuitos internos e a função computada por cada um de seus blocos, permite que trabalhos futuros utilizem os desenvolvimentos realizados nesta pesquisa. Esta descrição detalhada e funcional foi aceita para publicação no IEEE World Congress on Computational Intelligence (WCCI 2018): Sousa et al. (2018). A terceira contribuição teórica de médio impacto é a elaboração de um modelo distribuído de execução do SOM em FPGA sem o uso de uma unidade central de controle. Tal modelo permite a execução das fases de aprendizado e operação da rede neural em hardware de forma distribuída, a qual alcança um comportamento global de auto-organização dos neurônios apenas pela troca local de dados entre elementos de processamento vizinhos. A descrição do modelo distribuído, em conjunto com sua caracterização, está publicada em um artigo no International Joint Conference on Neural Networks do IEEE (IJCNN 2017): Sousa e Del-Moral-Hernandez (2017a). A última contribuição deste grupo de aporte teórico é a comparação entre diferentes modelos de execução do SOM em FPGA. A comparação tem a função de avaliar e contrastar três diferentes possibilidades de implementação do SOM: o modelo distribuído, o modelo centralizado e o modelo híbrido. Os testes realizados e os resultados obtidos estão publicados em um trabalho no International Symposium on Circuits and Systems do IEEE (ISCAS 2017): Sousa e Del-Moral-Hernandez (2017b). Finalmente, apresentam-se a seguir as contribuições avaliadas como de menor impacto, em comparação com as contribuições já descritas, ou ainda incipientes (e que possibilitam continuidades da pesquisa em trabalhos futuros), sendo relacionadas a seguir como contribuições complementares: * Pesquisa de literatura científica sobre o estado-da-arte da área da Engenharia de Sistemas Neurais Artificiais. * Identificação de grupos internacionais de pesquisa de execução do SOM em hardware, os quais foram reconhecidos por publicarem regularmente seus estudos sobre diferentes tipos de implementações e categorias de circuitos computacionais. * Enumeração das justificativas e motivações mais frequentes na literatura para o processamento de sistemas neurais de computação em hardware. * Comparação e contraste das características de microprocessadores, GPUs, FPGAs e ASICs (tais como, custo médio do componente, paralelismo computacional oferecido e consumo típico de energia) para contextualização do tipo de aplicações que a escolha pela pesquisa com o dispositivo FPGA possibilita. * Levantamento das propriedades de computação do SOM em hardware mais frequentemente utilizadas nas pesquisas publicadas na literatura, tais como, quantidade de bits usados nos cálculos, tipo de representação de dados e arquitetura típica dos circuitos de execução das diferentes etapas de processamento do SOM. * Comparação do consumo de área do FPGA e da velocidade de processamento entre a execução da função de vizinhança tradicional gaussiana e a função de vizinhança proposta neste trabalho (com resultados obtidos de aproximadamente 4 vezes menos área do chip e 5 vezes mais velocidade de operação). * Caracterização do aumento dos recursos consumidos no chip e da velocidade de operação do sistema, em relação à implementação do SOM com diferentes complexidades (quantidade de estágios decrescentes do fator de aprendizado e da abertura da função de vizinhança) e comparação destas propriedades da arquitetura proposta em relação aos valores publicados na literatura. * Proposta de uma nova métrica para caracterização do erro topográfico na configuração final do SOM após o treinamento. / In the context of design electrical circuits for processing artificial neural networks, this work focuses on the study of Self-Organizing Maps (SOM) executed on FPGA chips. The work attempts to answer the following question: how should the computational architecture be designed to efficiently implement in FPGA each one of the SOM processing steps? More specifically, this thesis investigates the distinct possibilities that different SOM computing architectures offer, regarding the processing speed, the consumption of FPGA resources and the consistency to the theory that underlies this neural network model. The motivation of the present work is enabling the development of neural processing systems that exhibit the positive features typically associate to hardware implementations, such as, embedded processing and computational acceleration. MAIN CONTRIBUITIONS In the course of the investigation, the present work generated contributions with different degrees of impact. The most essential contribution from the point of view of structuring the research process is the theoretical basis of the hardware-oriented SOM properties. This is important because it allowed the construction of the foundations for the study of different circuit architectures, so that the developments remained consistent with the theory that underpins the neural computing model. Another major contribution is the proposal of a processor circuit for implementing SOM in FPGA, which is the state-of-the-art in computational speed measured in CUPS (Connections Updated Per Second). This processor allows achieving 52.67 GCUPS, during the training phase of the SOM, which means a gain of 100%, approximately, in relation to other published works. The acceleration enabled by the FPGA parallel processing developed in this work reaches three to four orders of magnitude compared with software implementations of the SOM with the same configuration. The highlights made in the text indicate pieces of writing that synthesize the idea presented. The last main contribution of the work is the characterization of the FPGA-based SOM. This evaluation is important because, although similar, the computing processes of neural models in hardware are not necessarily identical to the same processes implemented in software. Hence, this contribution can be described as the analysis of the impact of the implemented changes, regarding the FPGA-based SOM compared to traditional algorithms. The comparison was performed evaluating the measures of topographic and quantization errors for the outputs produced by both implementations. This work also generated medium impact contributions, which can be divided into two groups: empirical and theoretical. The first empirical contribution is the survey of SOM applications which can be made possible by hardware implementations. The papers presented in this survey are classified according to their research area - such as Industry, Robotics and Medicine - and, in general, they use SOM in applications that require computational speed or embedded processing. Therefore, the continuity of their developments is benefited by direct hardware implementations of the neural network. The other two empirical contributions are the applications employed for testing the circuits developed. The first application is related to the reception of telecommunications signals and aims to identify 16-QAM and 64-QAM symbols. These two modulation techniques are used in a variety of applications with mobility requirements, such as cell phones, digital TV on portable devices and Wi-Fi. The SOM is used to identify QAM distorted signals received with noise. This research work was published in the Springer Journal on Neural Computing and Applications: Sousa; Pires e Del-Moral-Hernandez (2017). The second is an image processing application and it aims to recognize human actions captured by video cameras. Autonomous image processing performed by FPGA chips inside video cameras can be used in different scenarios, such as automatic surveillance systems or remote assistance in public areas. This second application is also characterized by demanding high performance from the computing architectures. All the theoretical contributions with medium impact are related to the study of the properties of hardware circuits for implementing the SOM model. The first of these is the proposal of an FPGA-based neighborhood function. The aim of the proposal is to develop a computational function to be implemented on chip that enables an efficient alternative to both: the Gaussian function (traditionally employed in the SOM training process) and the rectangular function (used rudimentary in the first published works on hardware-based SOMs). The second of those contributions is the detailed description of the basic components and blocks used to compute the different steps of the SOM algorithm in hardware. The description of the processing architecture includes its internal circuits and computed functions, allowing the future works to use the architecture proposed. This detailed and functional description was accepted for publication in the IEEE World Congress on Computational Intelligence (WCCI 2018): Sousa et al. (2018). The development of an FPGA distributed implementation model for the SOM composes the third of those contributions. Such a model allows an execution of the neural network learning and operational phases without the use of a central control unit. The proposal achieves a global self-organizing behavior only by using local data exchanges among the neighboring processing elements. The description and characterization of the distributed model are published in a paper in the IEEE International Joint Conference on Neural Networks (IJCNN 2017): Sousa e Del-Moral-Hernandez (2017a). The last contribution of this group is the comparison between different FPGA architectures for implementing the SOM. This comparison has the function of evaluating and contrasting three different SOM architectures: the distributed model, the centralized model and the hybrid model. The tests performed and the results obtained are published in an article in the IEEE International Symposium on Circuits and Systems (ISCAS 2017): Sousa e Del-Moral-Hernandez (2017b). Finally, the contributions assessed as having a minor impact, compared to contributions already described, or still incipient (and which allow the continuity of the research in possible future works), are presented as complementary contributions: * Research in the scientific literature on the state-of-the-art works in the field of Artificial Neural Systems Engineering. * Identification of the international research groups on hardware-based SOM, which were recognized for regularly publishing their studies on different types of implementations and categories of computational circuits. * Enumeration of the justifications and motivations often mentioned in works on hardware developments of neural computing systems. * Comparison and contrast of the characteristics of microprocessors, GPUs, FPGAs and ASICs (such as, average cost, parallelism and typical power consumption) to contextualize the type of applications enabled by the choice of FPGA as the target device. * Survey of literature for the most commonly hardware properties used for computing the SOM, such as the number of bits used in the calculations, the type of data representation and the typical architectures of the FPGA circuits. * Comparison of the FPGA resources consumption and processing speed between the execution of the traditional Gaussian neighborhood function and the proposed alternative neighborhood function (with obtained results of approximately 4 times less chip area and 5 times more computational speed). * Characterization of the increase in chip resources consumptions and the decrease in system speeds, according to the implementations of the SOM with different complexities (such as, the number of stages in learning factor and the width of the neighborhood function). Comparison of these properties between the proposed architecture and the works published in the literature. * Proposal of a new metric for the characterization of the topographic error in the final configuration of the SOM after the training phase.
437

Aplicação de redes neurais artificiais e filtro de Kalman para redução de ruídos em sinais de voz / Application of artificial neural networks and Kalman filtering for reduction of noise in speech signals

Antonio Marcos Selmini 19 June 2001 (has links)
A filtragem, na sua forma mais geral, tem estado presente na vida do homem há muito tempo. Com o surgimento de novas tecnologias (surgimento da eletricidade e a sua evolução) e o desenvolvimento da computação, as técnicas de filtragem (separação) de sinais elétricos. Normalmente, os sistemas de comunicação (telefonia móvel e fixa, sinais recebidos de satélites e outros sistemas) contém sinais indesejáveis responsáveis pela degradação do sinal original. Dentro desse contexto, este projeto de pesquisa apresenta um estudo do algoritmo Filtro Duplo de Kalman Estendido, onde um filtro e Kalman e duas redes neurais são empregadas para a redução de ruídos em sinais de voz. O algoritmo estudado foi aplicado ao processamento de um sinal corrompido por dois tipos de ruídos diferentes: ruído branco e ruído gaussiano e ruído branco não estacionário, conseguindo-se bons resultados. Uma melhora sensível do sinal filtrado pode ser conseguida com técnicas de pré-filtragem do sinal. Neste trabalho foi utilizado o filtro de médias para a pré-filtragem, obtendo um sinal filtrado com ruído musical de baixa intensidade. / Filtering in it\'s most general kind has been present in men\'s life for a long time. With the appearance of new technologies (appearance of electricity and it\'s evolution) and the deyelopment of the computer science, the filtering techniques started to be widely used in engineering to the filtering (separation) of electric signals. Normally the communication systems (fixed and mobile telephony, signals sent from satellites and other systems) bring undesired results responsible for the degradation of the original signal. Within this context, this research project shows a study of the algorithm Dual Extended Kalman Filtering, in which a Kalman filter and two neural networks are used for the reduction of noise in speech signals. The algorithm studied was applied to the processing of a signal corrupted by two types of different noises: gaussian white noise and non stationary white noise obtaining good results. A significant improvement of the filtered noise can be obtained with techniques of pre-filtering of the signal. In this research the average filter for a pre-filtering was used, obtaining a filtered signal with musical noise oflow intensity.
438

Sintonia RNA-RBF para o Projeto Online de Sistemas de Controle Adaptativo / RNA-RBF tuning for the Online Systems Adaptive Control

Machado, Madson Cruz 26 May 2017 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-07-18T19:31:22Z No. of bitstreams: 1 MadsonMachado.pdf: 3046442 bytes, checksum: 71cc6800f83fdbf38b97607067653f63 (MD5) / Made available in DSpace on 2017-07-18T19:31:22Z (GMT). No. of bitstreams: 1 MadsonMachado.pdf: 3046442 bytes, checksum: 71cc6800f83fdbf38b97607067653f63 (MD5) Previous issue date: 2017-05-26 / The need to increase industrial productivity coupled with quality and low cost requirements has generated a demand for the development of high performance controllers. Motivated by this demand, we presented in this work models, algorithms and a methodology for the online project of high-performance control systems. The models have characteristics of adaptability through adaptive control system architectures. The models developed were based on artificial neural networks of radial basis function type, for the online project of model reference adaptive control systems associated with the of sliding modes control. The algorithms and the embedded system developed for the online project were evaluated for tracking mobile targets, in this case, the solar radiation. The control system has the objective of keeping the surface of the photovoltaic module perpendicular to the solar radiation, in this way the energy generated by the module will be as high as possible. The process consists of a photovoltaic panel coupled in a structure that rotates around an axis parallel to the earth’s surface, positioning the panel in order to capture the highest solar radiation as function of its displacement throughout the day. / A necessidade de aumentar a produtividade industrial, associada com os requisitos de qualidade e baixo custo, gerou uma demanda para o desenvolvimento de controladores de alto desempenho. Motivado por esta demanda, apresentou-se neste trabalho modelos, algoritmos e uma metodologia para o projeto online de sistemas de controle de alto desempenho. Os modelos apresentam características de adaptabilidade por meio de arquiteturas de sistemas de controle adaptativo. O desenvolvimento de modelos, baseia-se em redes neurais artificiais (RNA), do tipo função de base radial (RBF, radial basis function), para o projeto online de sistemas de controle adaptativo do tipo modelo de referência associado com o controle de modos deslizantes (SMC, sliding mode control). Os algoritmos e o sistema embarcado desenvolvidos para o projeto online são avaliados para o rastreamento de alvos móveis, neste caso, o rastreamento da radiação solar. O sistema de controle tem o objetivo de manter a superfície do módulo fotovoltaico perpendicular à radiação solar, pois dessa forma a energia gerada pelo módulo será a maior possível. O processo consiste de um painel fotovoltaico acoplado em uma estrutura que gira em torno de um eixo paralelo à superfície da terra, posicionando o painel de forma a capturar a maior radiação solar em função de seu deslocamento ao longo do dia.
439

Aplicação de redes neurais artificiais para previsão de propriedades dos solos tropicais / Application of artificial neural networks for forecast the properties of tropical soils

Sandra Fabiana Rodgher 27 May 2002 (has links)
Este trabalho propõe a aplicação da técnica de redes neurais artificiais (RNAs) para a previsão de propriedades geotécnicas dos solos do município de São Carlos (SP), baseada em outras propriedades determinadas preliminarmente. Esse método tem a finalidade de simplificar o processo de obtenção das propriedades dos solos, eliminando a lentidão dos procedimentos de ensaios e os cálculos a serem realizados, além de reduzir a dificuldade de ter que fazê-los utilizando os métodos tradicionais. Foram simuladas cento e noventa e sete RNAs para a previsão das seguintes propriedades: unidade ótima, massa específica seca máxima, mini-CBR na umidade de moldagem obtido na umidade ótima, mini-CBR obtido após 24h de imersão na umidade ótima, expansão e contração obtidas na umidade ótima para as energias normal e intermediária. No treinamento das RNAs foi utilizada uma base de dados com um total de cento e uma amostras que, além de conter os valores das propriedades \"alvo\" para previsão, também contém: valor de azul (Va), coeficiente de atividade (CA), análise granulométrica por sedimentação (peneiras #0,42,#0,074 e #0,075), parâmetros da classificação MCT (c\', Pi, d\' e e\') e classificação por cores (croma, valor e matriz). O aplicativo utilizado para treinar as RNAs foi o EASYNN 7.5, que se baseia em redes Multiplayer Perceptron e no algoritmo de treinamento Backpropagation. Para a previsão de propriedades geotécnicas dos solos, os desempenhos das redes foram bastante bons para umidade ótima, massa específica seca máxima e contração nas energias normal e intermediária. Contudo, os desempenhos das RNAs para mini-CBR na umidade de moldagem, mini-CBR após 24h de imersão e expansão obtidas na umidade ótima de energias normal e intermediária foram menos satisfatórios. De maneira geral, os resultados obtidos nesse estudo sugerem que modelos que fazem uso das redes neurais artificiais para previsão de propriedades geotécnicas de solos para pavimentação apresentam-se como promissores e podem, no futuro, contribuir para a melhoria e redução de custos da fase de estudo geotécnico para implantação de vias em municípios de pequeno e médio portes. / The application of the technique of Artificial Neural Networks (ANNs) for the forecast of geotechnical properties of the soils in São Carlos, a municipal district in the of São Paulo State, based on other properties determined preliminary is the purpose of this work. This method has the goal of simplifying the process of obtaining the properties of the soils, eliminating the slowness of the tests procedures and the calculations to be accomplished, besides reducing the difficulty of having to do them using the traditional methods. One hundred and ninety seven ANNs were simulated for the forecast of the following properties: optimum moisture content, dry density, mini-CBR in the molding humidity obtained in the optimum moisture content, mini-CBR obtained after 24 h of soaking in the optimum moisture content, expansion and contraction obtained in the optimum moisture content for the normal and intermediate energies. In the training of ANNs a base of data was used with a total of one hundred and one samples that, besides containing the values of the properties \"objective\" for forecast, it also contains: methylene blue value (Va), activity coefficient (CA), granulometric analysis for sedimentation (sieves #0,42, #0,074 and #0,005), parameters of the MCT classification (c\', Pi, d\' and e\') and classification by colors (chroma, value and hue). The application used to train ANNs was EasyNN 7.5, that bases on nets Multilayer Perceptron and in the training algorithm Backpropagation. For the forecast of geotechnical properties of the soils, the performance of the nets were very good for optimum moisture content, dry density and contraction in the normal and intermediate energies. However, the performance of ANNs for mini-CBR in the molding humidity, mini-CBR after 24 h of immersion and expansion obtained in the optimun moisture content of the normal and intermediate energies were less satisfactory. In a general way, the results obtained in this study suggest that the models that use Artificial Neural Networks for forecast of geotechnical properties of soils come as promising and can, in the future, contribute for the improvement and costs reduction during the period of geothecnical study in the implantation of roads in small and medium sized municipal districts.
440

Um método para estimar observáveis GPS usando redes neurais artificiais / A method to estimate GPS data observables using artificial neural networks

Carlos Augusto Uchôa da Silva 27 June 2003 (has links)
O NAVSTAR-GPS, com uma grande variedade de conjuntos receptores e sua aplicabilidade prática em diversas áreas, transformou-se no mais difundido dos sistemas de posicionamento. Porém, necessidades cada vez maiores em termos de precisão trouxeram consigo o ônus de um custo elevado com a aquisição de equipamentos de dupla freqüência. Este trabalho consiste no desenvolvimento de um método que possibilite a modelagem das observáveis GPS, através de Redes Neurais Artificiais, bem como a agregação destes dados a um arquivo gerado por um receptor de uma freqüência, conferindo-lhe características específicas de arquivos gerados por receptores de dupla freqüência e código P. Isto possibilita que dados gerados por receptores de uma freqüência, a imensa maioria dos receptores utilizados no Brasil, possam ser processados como vetores de bases longas. Os resultados obtidos indicam que o uso de modelos neurais, treinados por algoritmos de aprendizado supervisionado, são uma alternativa promissora para estimar dados GPS. / The NAVSTAR-GPS, with a great variety of receivers and its practical aplicabillity in several areas, transformed itself in the most known positioning system. But the necessity of improving the results precision brings with it a cost increasing caused by the use of equipments of dual frequency equipments. This work consist on the development of a method that makes possible the GPS data modelling using Neural Networks, as well as the aggregation of these data into a file generated by single frequency receiver, providing to the system specific characteristics of files generated by double frequency an P code receiver. This makes possible that data generated by receivers of single frequency, the majority of receivers in Brazil, can be processed as vectors of long bases. The results obtained indicate that the use of Neural Network models, with algorithms of supervised learning are a promissing alternative to estimate GPS data.

Page generated in 0.0966 seconds