• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 344
  • 52
  • 46
  • 26
  • 26
  • 26
  • 26
  • 26
  • 26
  • 25
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 564
  • 564
  • 181
  • 137
  • 91
  • 70
  • 69
  • 67
  • 63
  • 58
  • 57
  • 51
  • 49
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Design of an aerodynamic attitude control system for a CubeSat

Auret, Jacoba 03 1900 (has links)
Thesis (MscEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: The Cape Peninsula University of Technology, in collaboration with Stellenbosch University, is developing a 3-unit CubeSat for a low earth polar orbit. The two main payloads are a camera and a radio frequency beacon. This beacon will be used to calibrate the radar antenna patterns of an antenna of the Hermanus Magnetic Observatory at their base in Antarctica. This thesis describes the development of an aerodynamic attitude determination and control system needed to achieve three-axis stabilisation of the satellite and to perform accurate pointing of the camera. The satellite structure is designed to utilise aerodynamic means of control. It includes four feather antennae for passive pitch-yaw stabilisation and two active aerodynamic roll control paddles. The sensors used are a three-axis magnetometer, ne sun sensor and nadir sensor. Three attitude determination methods are investigated, namely the Triad, Rate Kalman Filter and Extended Kalman Filter algorithm. Apart from the aerodynamic control elements of the satellite, three magnetic torque rods and three nano-reaction wheels are also included in the design. Three control modes for the satellite are identi ed and various control methods are investigated for these control modes. The various attitude determination and control methods are evaluated through simulations and the results are compared to determine the nal methods to be used by the satellite. The magnetic Rate Kalman Filter is chosen as attitude determination method to be used when the satellite is tumbling and a combination of the sun Rate Kalman Filter and the Triad algorithm is to be used when the satellite experiences low angular rates. The B-dot and Y-spin controller is chosen for the detumbling control mode, the aerodynamic and cross-product control method for the three-axis stabilisation control mode and the quaternion feedback control method for the pointing control mode of the satellite. The combination of magnetic and aerodynamic control proved to be su cient for the initial stabilisation of the satellite, but the three nano-reaction wheels are required for the pointing control of the imaging process. / AFRIKAANSE OPSOMMING: Die Kaapse Skiereiland Universiteit van Tegnologie, in samewerking met die Universiteit van Stellenbosch, is tans besig met die ontwikkeling van 'n 3-eenheid CubeSat vir 'n pol^ere, lae aard-wentelbaan. Die twee loonvragte van die satelliet bestaan uit 'n kamera en 'n radiofrekwensie-baken. Die radiofrekwensie-baken sal gebruik word om 'n antenna van die Hermanus Magnetiese Observatorium, by hul basis in Antarktika, se radar antenna patrone te kalibreer. Hierdie tesis beskryf die ontwikkeling van 'n aerodinamiese ori entasiebepaling en -beheerstelsel wat benodig word om die satelliet in drie asse te stabiliseer en om die kamera noukeurig te rig. Die satelliet se struktuur word ontwerp vir aerodinamiese beheer. Dit sluit vier veerantennas in vir passiewe duik-gier beheer, asook twee aerodynamiese rolbeheer appies vir aktiewe beheer. Die sensors wat gebruik word sluit 'n drie-as magnetometer, fyn sonsensor en nadirsensor in. Drie ori entasiebepalingsmetodes word ondersoek, naamlik die Drietal, Tempo Kalman lter en die Uitgebreide Kalman lter algoritmes. Buiten die aerodinamiese beheerelemente van die satelliet, word daar ook drie magneetstange en drie nano-reaksiewiele ingesluit in die ontwerp. Daar word onderskeid getref tussen drie beheermodusse en verskeie beheermetodes word ondersoek vir hierdie beheermodusse. Die verskeie ori entasiebepalings- en ori entasiebeheermetodes word ge evalueer deur middel van simulasies en die resultate word vergelyk om die beste metodes vir die satelliet se gebruik te bepaal. Die magnetiese Tempo Kalman lter word gekies as ori entasiebepalingsmetode vir 'n tuimelende satelliet en die kombinasie van die son Tempo Kalman lter en Drietal algoritme word gebruik vir 'n satelliet met lae hoektempos. Die B-dot en Y-spin beheerder word gekies vir die tuimelbeheermodus, die aerodinamiese en kruisproduk beheermetode vir die drie-as-stabilisasie-beheermodus en die kwaternioon terugvoer beheermetode vir die rigbeheermodus van die satelliet. Daar word bepaal dat die samespanning van magnetiese en aerodinamiese beheer voldoende is vir die aanvanklike stabilisering van die satelliet, maar dat die drie nano-reaksiewiele benodig word om die kamera te rig tydens die beeldvormingproses.
362

Control moment gyro actuator for small satellite applications

Berner, Reimer 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2005. / The aim of the thesis is to design a Control Moment Gyro (CMG) actuator which can be used in small satellite applications. The hardware and software of the CMG has to be designed according to specifications given. A satellite fitted with these CMGs has to be able to do a 30 degree rotation within 10 seconds.
363

Reusable software defined radio platform for micro-satellites

Van Wyk, John Foster 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--Stellenbosch University, 2008. / This thesis describes the design and implementation of a software platform for software defined radio (SDR). This platform was to form part of an experimental satellite payload. Several other experiments were also housed on this platfrom and subsequently had to be incorporated into the design. The hardware components of the payload were already de- termined at the start of the project but firmware had to be created as part of the project. The software platform was based on the Linux kernel. Device drivers had to be designed for the hardware and firmware components. These drivers were designed so that standard Unix utilities could be used to interact with them. This allowed for easy testing of the system and the programs running on it. The use of the platform for modulation and demodulation of analogue signals was demonstrated using a proof-of-concept SDR application.
364

Strategies for the control of a satellite with thruster misalignment

Van Daalen, Corne E. 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2006. / This project investigates two problems related to satellites that contain cold gas thrusters and reaction wheels. The first problem concerns the estimation of the thruster force response to a pulse command. An optimal data integration method is developed and implemented to estimate the thruster force output from a number of noisy sensors. The second problem occurs when the output force vector of a thruster mounted on a satellite is misaligned with the centre of mass with the satellite. As a result a disturbance torque is generated on the satellite during thruster operation.
365

Integration of GPS, INS and pseudolite to geo-reference surveying and mapping systems

Wang, Jianguo Jack, Surveying & Spatial Information Systems, Faculty of Engineering, UNSW January 2007 (has links)
Despite significant progress in GPS/INS integration-based direct geo-referencing (DGR) technology over the past decade, its performance still needs to be improved in terms of accuracy and tolerance to GPS outages. This is mainly due to the limited geometric strength of the GPS satellite constellation, the quality of INS and the system integration technology. This research is focused on pseudolite (PL) augmentation to enhance the geometric strength of the GPS satellite constellation, and the Neural Network (NN) aided Kalman filter (KF) system integration algorithm to improve the geo-referencing system's performance during GPS outages. The main research contributions are summarized as below: a) Systematic errors introduced by pseudolites have been investigated. Theoretical and numerical analyses reveal that errors of troposphere delay modelling, differential nonlinearity and pseudolite location are sensitive to pseudolite receiver geometry. Their effect on final positioning solutions can be minimised by selecting optimal pseudolite and receiver locations, which is referred to as geometry design. Optimal geometry design for pseudolite augmented systems has been proposed based on simulation results in airborne surveying scenarios. b) Nonlinear geometry bias, or nonlinearity, exists in single difference processes when the unit vectors from the reference and user receivers to a satellite or pseudolite are non-parallel. Similar to long baseline differential GPS (DGPS), nonlinearity is a serious issue in pseudolite augmentation. A Projected Single Difference (PSD) method has been introduced to eliminate nonlinear geometry bias. An optimized expression has been derived to calculate the direction of project vectors, and the advantages of applying PSD in pseudolite augmented airborne DGPS have been demonstrated. c) A new method for pseudolite tropospheric delay modelling has been proposed, which is based on single-differenced GPS tropospheric delay models. The performance of different models has been investigated through simulations and field testing. The advantages and limitations of each method have been analysed. It is determined that the Bouska model performs relatively well in all ranges and elevations if the meteorological parameters in the models can be accurately collected. d) An adaptive pseudolite tropospheric delay modelling method has been developed to reduce modelling error by estimating meteorological parameters in real-time, using GPS and pseudolite measurements. Test results show that pseudolite tropospheric delay modelling errors can be effectively mitigated by the proposed method. e) A novel geo-referencing system based on GPS/PL/INS integration has been developed as an alternative to existing GPS/INS systems. With the inclusion of pseudolite signals to enhance availability and geometry strength of GPS signals, the continuity and precision of the GPS/INS system can be significantly improved. Flight trials have been conducted to evaluate the system performance for airborne mapping. The results show that the accuracy and reliability of the geo-referenced solution can be improved with the deployment of one or more pseudolites. f) Two KF and NN hybrid methods have been proposed to improve geo-referenced results during GPS outages. As the KF prediction diverges without measurement update, the performance of a GPS/INS integrated system degrades rapidly during GPS outages. Neural networks can overcome this limitation of KF. The first method uses NN to map vehicle manoeuvres with KF measurement in a loosely coupled GPS/INS system. In the second method, an NN is trained to map INS measurements with selected KF error states in a tightly coupled GPS/INS system when GPS signals are available. These training results can be used to modify KF time updates. Optimal input/output and NN structure have been investigated. Field tests show that the proposed hybrid methods can dramatically improve geo-referenced solutions during GPS outages.
366

Integration of GPS, INS and pseudolite to geo-reference surveying and mapping systems

Wang, Jianguo Jack, Surveying & Spatial Information Systems, Faculty of Engineering, UNSW January 2007 (has links)
Despite significant progress in GPS/INS integration-based direct geo-referencing (DGR) technology over the past decade, its performance still needs to be improved in terms of accuracy and tolerance to GPS outages. This is mainly due to the limited geometric strength of the GPS satellite constellation, the quality of INS and the system integration technology. This research is focused on pseudolite (PL) augmentation to enhance the geometric strength of the GPS satellite constellation, and the Neural Network (NN) aided Kalman filter (KF) system integration algorithm to improve the geo-referencing system's performance during GPS outages. The main research contributions are summarized as below: a) Systematic errors introduced by pseudolites have been investigated. Theoretical and numerical analyses reveal that errors of troposphere delay modelling, differential nonlinearity and pseudolite location are sensitive to pseudolite receiver geometry. Their effect on final positioning solutions can be minimised by selecting optimal pseudolite and receiver locations, which is referred to as geometry design. Optimal geometry design for pseudolite augmented systems has been proposed based on simulation results in airborne surveying scenarios. b) Nonlinear geometry bias, or nonlinearity, exists in single difference processes when the unit vectors from the reference and user receivers to a satellite or pseudolite are non-parallel. Similar to long baseline differential GPS (DGPS), nonlinearity is a serious issue in pseudolite augmentation. A Projected Single Difference (PSD) method has been introduced to eliminate nonlinear geometry bias. An optimized expression has been derived to calculate the direction of project vectors, and the advantages of applying PSD in pseudolite augmented airborne DGPS have been demonstrated. c) A new method for pseudolite tropospheric delay modelling has been proposed, which is based on single-differenced GPS tropospheric delay models. The performance of different models has been investigated through simulations and field testing. The advantages and limitations of each method have been analysed. It is determined that the Bouska model performs relatively well in all ranges and elevations if the meteorological parameters in the models can be accurately collected. d) An adaptive pseudolite tropospheric delay modelling method has been developed to reduce modelling error by estimating meteorological parameters in real-time, using GPS and pseudolite measurements. Test results show that pseudolite tropospheric delay modelling errors can be effectively mitigated by the proposed method. e) A novel geo-referencing system based on GPS/PL/INS integration has been developed as an alternative to existing GPS/INS systems. With the inclusion of pseudolite signals to enhance availability and geometry strength of GPS signals, the continuity and precision of the GPS/INS system can be significantly improved. Flight trials have been conducted to evaluate the system performance for airborne mapping. The results show that the accuracy and reliability of the geo-referenced solution can be improved with the deployment of one or more pseudolites. f) Two KF and NN hybrid methods have been proposed to improve geo-referenced results during GPS outages. As the KF prediction diverges without measurement update, the performance of a GPS/INS integrated system degrades rapidly during GPS outages. Neural networks can overcome this limitation of KF. The first method uses NN to map vehicle manoeuvres with KF measurement in a loosely coupled GPS/INS system. In the second method, an NN is trained to map INS measurements with selected KF error states in a tightly coupled GPS/INS system when GPS signals are available. These training results can be used to modify KF time updates. Optimal input/output and NN structure have been investigated. Field tests show that the proposed hybrid methods can dramatically improve geo-referenced solutions during GPS outages.
367

The design of a communication protocol for a distributed ADCS for SUNSAT 2

Magano, Abram Tshwaro 12 1900 (has links)
Thesis (MScEng)--University of Stellenbosch, 2001. / ENGLISH ABSTRACT: One of the main subsystems of SUNSAT is the Attitude Determination and Control System (ADCS), responsible for the orientation and positioning of the satellite. Due to the integrated architecture of the system, several shortcomings were identified. A possible solution to the problems is the implementation of a distributed system. The design of a communication protocol for a distributed system is the focus of this thesis. An investigation on different network topologies and communication protocols as well as error control techniques is carried out to establish a combination that meets the requirements of the ADCS. Based on defined protocol specifications a detailed protocol design is proposed. Then the protocol is implemented using a layered software structure that emanates from the OSI layering model, to provide well defined software structures and interfaces. A series of measurements have shown that the protocol meets the functional requirements of the ADCS and further provides reliable data transfer on the network. / AFRIKAANSE OPSOMMING: Een van die vernaamste dele van SUNSAT is die "Attitude Determination and Control System" (ADCS) wat verantwoordelik is vir die orientasie en posisionering van die satelliet. Verskeie tekortkomminge as gevolg van die geYntegreerde argitektuurvan die stelsel, is geYdentifiseer. 'n Moontlike oplossing vir die probleme is die implementering van 'n verspreide stelsel. Die ontwerp van 'n kommunikasie protokol vir 'n verspreide stelsel is die fokus van die tesis. 'n Ondersoek na verskeie netwerk topoloqie en kommukasie protokolle, asook foutbeheer tegnieke is uitgevoer om vas te stel watter kombinasie die ADCS se vereistes sal bevredig. 'n Gedetaileerde protokol ontwerp is voorgestel gebaseer op gedefineerde protokol spesifikasies. Hierdie protokol is toe geYmplementeer deur gebruik te maak van vlak gestruktureerde sagteware wat afkomstig is van die OSI model, met die oog op goed gedefineerde sagteware strukture en koppelvlakke. 'n Reeks meetings het aangedui dat die protokol die funksionele vereistes van die ADCS bevredig en dat dit verder betroubare data verplasing oor die netwerk verskaf.
368

Java implementation of AX.25 link-layer protocol for future micro-satellites

Ramonyalioa, Thethe Tshepo 04 1900 (has links)
Thesis (MScEng)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: This thesis investigates the viability of implementing the AX.25 protocol in Java, for satellite applications. The AX.25 protocol forms part of the Communications subsystem of a micro-satellite. It describes the implementation of a standard packet-radio link-layer communication protocol in Java, for future use on satellite on-board computers, allowing amongst other things, a reliable communications platform. An investigation into factors that make AX.25 preferable over other communication protocols, as well as advantages of Java as a language used in the implementation, is made. The design of the implementation is described. Finally, efficiency of the Java implementation is evaluated and optimizations identified and recommended. / AFRIKAANSE OPSOMMING: Hierdie tesis bespreek die lewensvatbaarheid van 'n Java implementering van die AX.25 protokol vir satelliet toepassings. AX.25 is deel van die kommunikasie stelsel van 'n mikro-satelliet. Dit beskryf die implementering van 'n standaard radio data kommunikasie intervlak in Java vir die toekomstige gebruik op die aanboord-rekenaarstelsels van satelliete. Hierdie intervlak bied, insluitende ander eienskappe, 'n betroubare kommunikasie platform. In Deeglike ondersoek na die faktore wat AX.25 meer aanloklik maak vir satellite toepassings is gemaak, asook hoe 'n Java implementering vergelyk met ander beskikbare tegnologie. Die geskiktheid van Java vir die implementering word ook bespeek in die lig van evaluerings wat gedoen is op die finale protokol.
369

Development of attitude controllers and actuators for a solar sail cubesat

Mey, Philip Hendrik 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: CubeSats are small, lightweight satellites which are often used by academic institutions due to their application potential and low cost. Because of their size and weight, less powerful attitude controllers, such as solar sails, can be used. In 2010, the Japanese satellite, Ikaros, was launched to illustrate the usage of solar sails as a propulsion system. Similarly, by exploiting the solar radiation pressure, it is possible to use a solar sail, together with three magnetorquers, to achieve 3-axis attitude control of a 3-unit CubeSat. Simulations are required to demonstrate the attitude control of a sun-synchronous, low Earth orbit CubeSat using a solar sail. To allow the adjustment of the solar sail, and its resulting torque, a mechanical structure is required which can be used to position the sail within two orthogonal axes. Although the magnetorquers and solar sail are sufficient to achieve 3-axis attitude control, the addition of a reaction wheel can be implemented in an attempt to improve this control. / AFRIKAANSE OPSOMMING: CubeSats is klein, ligte satelliete wat dikwels deur universiteite gebruik word weens hul lae koste en groot toepassings potensiaal. As gevolg van hulle gewig en grootte, kan minder kragtige posisie beheerders, soos byvoorbeeld sonseile, gebruik word. Die Japannese satelliet, Ikaros, was in 2010 gelanseer om die gebruik van ’n sonseil as aandrywingstelsel te illustreer. Net so is dit moontlik om die bestraling van die son te gebruik, met behulp van ’n sonseil, en drie magneetstange om 3-as posisiebeheer op ’n 3-eenheid CubeSat te bekom. Simulasies word benodig om die posisie beheer van ’n sonsinkrone, lae-aard wentelbaan CubeSat met ’n sonseil te demonstreer. ’n Meganiese struktuur word benodig vir die posisionering van die sonseil in twee ortogonale asse sodat die sonseil, en dus die geassosieerde draaimoment, verskuif kan word. Alhoewel die magneetstange en sonseil voldoende is om 3-as posisiebeheer te bekom, kan ’n reaksiewiel bygevoeg word om hierdie beheer te probeer verbeter.
370

An attitude control system for the deployment and stabilisation of a tethered dual CubeSat mission

Kearney, Mike-Alec 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The use of electrodynamic tethers on-board satellites is an exciting scientific prospect. These conductive tethers provide the means for satellites to generate power and to do propulsion by electrodynamic interaction with the geomagnetic field. Although well researched in theory, the concept has not enjoyed much success in practice. This study aims to utilise low-cost CubeSats as experimental tool to verify many of the theoretical principles that govern the behaviour of conductive tethers in orbit. The study provides a theoretical background of the concept by evaluating past tether missions and analysing existing theory. A feasible application of an electrodynamic tether within the size and weight limitations of a Nano-satellite is formulated. Existing theoretical work is adapted to model the dynamics and electrodynamics of specifically Nano-satellites. Using these mathematical models, control and estimation algorithms are designed which would provide stable deployment of a tethered CubeSat pair and stable control of the orientation of the tethered system. To be able to implement these algorithms on a satellite mission, a prototype of a sensor capable of measuring the angle of the tether using a CMOS camera is designed and built. A hardware platform is built to test the deployment of the tether using an electric motor. Electronics are designed to control the operation of the camera, to do motor control, and to run control and estimation algorithms. Using the results obtained from the practical tests done on the hardware, and using the theoretical models and control algorithms designed, a full orbital simulation of the deployment was done. This simulation includes the performance of the deployment system, the electrodynamic performance of the tether in earth‟s plasmasphere, and the estimation and control algorithms to control the system. Different deployment strategies are analysed and their performance are compared. / AFRIKAANSE OPSOMMING: Die gebruik van elektrodinamiese toue aanboord satelliete is 'n opwindende wetenskaplike vooruitsig. Hierdie geleidende toue verleen aan die satelliete die vermoë om krag op te kan wek en propulsie deur elektriese interaksie met die geomagnetiese veld te kan doen. Alhoewel dit goed nagevors is in teorie, het die konsep nog nie veel sukses in die praktyk geniet nie. Hierdie studie het dit ten doel om lae-koste CubeSats aan te wend as 'n eksperimentele instrument om baie van die teoretiese beginsels wat geld vir die gedrag van geleidende toue in wentelbane te verifieer. Die studie bied 'n teoretiese agtergrond van die konsep deur die evaluering van vorige tou-missies sowel as die analise van bestaande teorie. 'n Uitvoerbare toepassing van 'n elektrodinamiese tou binne die grootte- en gewigsbeperkinge van 'n Nano-satelliet is geformuleer. Bestaande teoretiese werk is aangepas om die dinamika en elektrodinamika spesifiek van toepassing op Nano-satelliete, te modelleer. Deur hierdie wiskundige modelle te gebruik, is beheer- en afskattingsalgoritmes ontwerp wat stabiele ontplooiing van 'n verbinde CubeSat-paar en stabiele beheer van die oriëntasie van die verbinde stelsel sal verseker. Om hierdie algoritmes te implementeer op 'n satelliet-sending, is 'n prototipe van 'n sensor wat in staat is om die hoek van die tou met behulp van 'n CMOS kamera te meet, ontwerp en gebou. 'n Hardeware platform is gebou om die ontplooiing van die tou met behulp van 'n elektriese motor te toets. Elektronika is ontwerp om die kamera te beheer, motor beheer te doen asook om beheer- en afskattingsalgoritmes uit te voer. Deur gebruik te maak van die resultate wat verkry is tydens die praktiese toetse wat gedoen is op die hardeware, en deur gebruik te maak van die teoretiese modelle en beheeralgoritmes wat ontwerp is, is 'n volle wentelbaan-simulasie van die ontplooiing gedoen. Hierdie simulasie sluit die gedrag van die ontplooiingstelsel, die elektriese gedrag van die geleidende tou in die aarde se plasmasfeer, en die afskatting- en beheeralgoritmes om die stelsel te beheer in. Verskillende ontplooiingstrategieë word ontleed en hul gedrag word vergelyk.

Page generated in 0.0765 seconds